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I. INTRODUCTION 

In this complex age there is a demand for handling enormous amounts of 

information in very short time periods. To meet this need, those in the 

computer industry are constantly searching for techniques to increase the 

already tremendous data processing speed of their product. Considering the 

complexity of the overall computer, there are obviously many factors con

tributing to its operating speed. However, one of the most basic factors 

is that of the decision speed of the individual components. It is with 

this consideration that this thesis will be concerned. 

Before the computer can make a decision, many individual diodes and 

transistors must be switched from one electrical state to another. Since 

no implemented device is a theoretical switch, there is an inherent delay 

associated with each element. In this thesis, the switching delays will be 

analyzed and an investigation made of how these delays vary as a function 

of the specified parameters of the diode. These results may be used by the 

circuit designer and the component engineer to predict switching delays for 

a specified p-n junction. 

A. Explanation of the Switching Transient 

To analyze the switching transient, both the forward and reverse bias 

conditions must be considered. The forward conductivity of the diode is 

usually large enough and the forward junction voltage is usually small e-

nough that the forward current is determined by the external circuitry. 

Under this consideration the delay associated with forward biasing of a di

ode may be neglected. Even if these conditions are not met, the delay of 
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the junction current to reach its steady state value for forward bias is 

negligible small compared to that of reverse bias. However, it is still 

necessary to study the forward bias condition. This is because the condi

tions at the end of the forward bias must be found and applied as the ini

tial conditions for the reverse bias state. 

An equivalent circuit of the switching process, together with applied 

voltage and diode current waveshape, is shown in Figure 1. Before the time 

T = 0, the diode may be considered either open circuited or in the steady 

state reverse bias condition. 

At time T = 0 a forward bias current pulse of 1^ is applied to the di

ode. During this period, positive current carrier (holes) are passed 

through the p-type material and injected into the n-type material at the 

junction. This results in an excess of holes in the n-type region, the 

concentration of which is a maximum at the junction and decays to zero far 

away from the junction. The carrier concentrations during this forward 

bias condition are shown in Figure 2. 

At time T = T^, the forward bias is terminated and a reverse voltage 

V is applied to the circuit. For a finite period after the application of 

the reverse bias, there remains a concentration of excess holes in the vi

cinity of the junction. These holes serve as current carriers which pre

vents the junction voltage from reversing. This effect causes the diode to 

behave as a short. Hence the value of the junction current is a constant; 

equal to the applied reverse voltage divided by the external circuit re

sistance. This period will be called the storage time of the reverse tran

sient. 
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After a time of (Tg), the carrier density at the junction falls to the 

equilibrium value. The junction voltage then reverses and begins to rise 

toward the value of the applied reverse voltage. The time after the stor

age period is defined as the recovery phase. The current during this por

tion results from removing the remaining excess holes in the n-type region 

and charging the depletion layer capacitance. A sketch of the junction 

voltage and diode current is shown in Figure 3. 

B. Definition of Terms and Symbols 

In the calculations, it will be advantageous to define the value of 

time as zero at the beginning of each phase. However, a distinction must 

then be made between the various phases of operation. For this purpose the 

period of forward bias will be denoted as Phase I, the storage time as Phase 

II and the recovery period as Phase III. Each quantity in this thesis with 

a subscript of I, II, or III will mean that it is defined for its correspond

ing phase with T = 0 being taken as the beginning of that phase. 

To reduce the number of terms appearing in the equations, normalized 

time and distance will be used throughout this analysis. The normalized 

time (T) will be defined as the actual time (t) divided by the average life

time of the holes in the n-type material. The normalized distance (z) will 

be defined as the actual distance through the material (x) divided by the 

average diffusion length (L^) of holes in the n-type material. 

For ease of handling in the differential equations, the symbol (i) 

will be defined as a dimensionless quantity proportional to current. Al

though it will be called current, the value of (i) shown in this thesis 
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must be multiplied by qD^/L^ to obtain the actual current density (amps/m^). 

A complete list of defined terms and symbols may be found in Table 1. 

Table 1. Definition of symbols 

I = - - This is defined as a dimensionless quantity proportional to 

current. (J = -qD dp/dx: I = J L /qD = -rWdz) 
P P P P P 

Iy - Forward current flowing before application of reverse bias. 

3L - Initial reverse current flowing through the diode after the 
reverse bias is applied. This current is determined by the 
external circuitry and flows during the constant current phase 
of recovery. This current is defined as negative. 

© - Ratio of the reverse current immediately after the application 
of reverse bias (-Ir) to the forward current flowing immedi
ately before the application of the reverse bias (1^). 

Vj - Junction voltage of the diode. 

V - Reverse bias voltage applied to the diode circuit. 

T - Normalized time (t/T^). 

T - Normalized storage time of the junction. Time from the appli-
5 cation of the reverse bias until the junction voltage goes 

through zero negatively. 

Tp - Average lifetime of the holes in the n-type region. 

D^ - Diffusion constant for holes in the n-type region. 

Up - Mobility of holes in the n-type region. 

L - Diffusion length of holes in the n-type region. (L = D T ) 
P P P P 

x - Distance through the one-dimensional semiconductor, (x = 0 
at the junction) 

z - Normalized distance through the crystal, (a = x/L^) 

p(T,z) - Hole density (in number of holes per cm ) as a function of the 
normalized distance through the crystal and time. 
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Table 1. Definition of symbols (continued) 

Pn - Total density of holes in the n-type region. 

p^ - Equilibrium hole density in the n-type region. 

p - Excess hole density in the region of consideration, (p = 

pâ - V 

S - Recombination velocity (cm/sec) 
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II. PREVIOUS ANALYSIS OF THE SWITCHING TRANSIENT 

A major contribution to the understanding of the response of a p-n 

junction resulted from work conducted concurrently by R. H. Kingston and 

by B. Lax and S, F. Neustadter (6, 8) at the Lincoln Labs in 1953-54. In 

their articles, the storage time of a p-n junction was found to be related 

to the values of forward and reverse current by the error function rela

tion of erf /¥ = l/(l + ©). This analysis, however, was only conducted 

for the simplest mathematical model with the following properties : 1. In

finite length of n-type region; 2. No potential gradient in the n-type re

gion; 3. Steady state forward bias. 

In solving for the current during the recovery phase severe assump

tions were made to obtain a closed solution. Also this solution had a 

singularity at the end of the storage phase and hence was only good for 

large values of time beyond the storage period. To compensate for this, an 

expression was obtained for the diode current if an infinite amount of re

verse current was initially allowed to flow, i.e., Tg = 0. The conclusion 

was that the current during the recovery phase would always be less than 

predicted by the solution for this period and greater than the equation for 

the diode current following a zero storage time period. The use of this 

limiting case of Tg = 0 was also employed by Shulman and McMahon (13). 

The investigation of the reverse transient after a finite forward bias 

time was conducted by W. H. Ko (7). However, after the equations were set 

up to determine the storage time the following statement was made : "Because 

of the complexity of the initial condition as well as the implicit relation

ship between the boundary conditions, it has not been found possible to 
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obtain a simple exact solution for this problem". Hence, approximations 

were made which limited the application of the results. 

All of the previously mentioned treatments of the switching transients 

have assumed constant minority carrier lifetime (Tp). To investigate this 

assumption, methods have been derived to measure this quantity (9, 14). 

However, the assumption of a constant value for the hole lifetime is not al

ways true. The variation in minority carrier lifetime as a function of the 

hole energy level has also been investigated, (l, 2 and 12). 
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III. SCOPE OF INVESTIGATION 

With the variations in physical dimensions of the diode material and 

the variations in operating conditions, many diode applications do not fall 

within the assumptions made for the existing treatments. By considering 

these factors, it is the purpose of this thesis to serve as a general ref

erence for predicting the reverse response of the p-n junction. 

A. Assumptions 

Some of the general assumptions made in the cited literature are the 

following: 

1. Steady state forward bias condition prior to the application of 

the reverse bias pulse. 

2. The width of the n-type material is much greater than the diffu

sion length of minority carriers in that region. 

3. No field intensity away from the junction. 

4. During the recovery phase, the current associated with the cre

ation of the depletion layer capacitance can be neglected com

pared to the diffusion current through the junction. 

5. The lifetime of the holes in the n-type material is a constant 

throughout the switching transient. 

6. The conductivity, consequently the doping level, of the p-type 

material is much greater than that of the n-type material. 

In this analysis, a complete investigation will be conducted for the 

condition when assumptions 1, 2, and 3 are not met. In other words, the 

case will be considered when the forward bias pulse is applied for a finite 
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period T^, the width of the n-type region (W^) is comparable to the diffu

sion length of the minority carriers and when there exists a potential gra

dient in the n-type region. 

The validity of the assumption 4 will be investigated. Conclusions will 

be drawn as to when this assumption may be employed and what compensations 

must be made when the approximation is not warranted. 

Assumptions 5 and 6 above will be used here as they have been in all 

literature cited. Assumption 6 is invariably met in commercially available 

diodes and does not limit the application of the results. A complete analy

sis of the validity of assumption 5 is given by Shockley (12). 

B. Method of Analysis 

A general review of transport phenomena will first be conducted. From 

this consideration the diffusion equation, which governs the flow of posi

tive carriers in the n-type region, will be obtained. 

The solution of the diffusion equation yields terms which contain the 

error integral or error function (as it is usually called). This function 

appears several times in this thesis in the boundary conditions of subse

quent differential equations. Due to the difficulty in handling the error 

function in differential equations it became necessary to obtain an approx

imation for it. By making.an exponential approximation, exact solutions 

to the necessary differential equations may be obtained. 

From the use of the diffusion equation, the error function approxima

tion and the proper boundary conditions, the reverse response of the diode 

will be determined. 
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IV". ANALYSIS AND CALCULATIONS 

A. General Transport Theory 

The basic equation governing the flow of particles is the equation of 

continuity. This equation, which results from the conservation of matter, 

may be stated as follows : The rate of increase of particles within a volume 

is equal to the net inward flow across the surface of the volume. The con

tinuity equation applied to the minority carrier holes in the n-type region 

may be stated as follows : 

time rate 
of increase 
of holes 

rate of ther
mal generation 
of holes 

rate of re
combination 
of holes 

divergence 
of hole 
flow 

(1) 

The method of the derivation presented here is similar to that of ref

erences 10, 11 and 15. We will consider a small volume, in the n-type ma

terial of dx dy dz and centered at x, y, z. The rate of change of holes in 

dx dy dz is 

^ dx dy dz (2) 

which becomes the term on the left hand side of Equation 1. The excess rate 

of generation over recombination may be written as 

(g - r) dx dy dz ; (3) 

where g is the net rate of generation of holes per unit volume (due to ther

mal excitation, etc.) and r is the net rate of recombination with electrons. 

This term represents the first two quantities on the right hand side of Equa

tion 1. 
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The net flow of holes into the region may be obtained from the current 

density. Since by definition the region extends in the x direction from 

x - dx/2 to x + dx/2, the current density into the dy dz face of the volume 

will be 

dl 
IpxU, y, z) - (x, y, z) — (4) 

and that out of the other will be 

dl 
Ipx(x, y, z) + (x, y, z) g- • (5) 

The resulting hole flow into the region will then become 

ï <V " *az " î(V + ^ 

1 5lnx = - - dx dy dz. (6) 

Similarly the net hole flow into the dx dy and dy dz faces may be found, 

which leads to the net flow into dx dy dz being 

dl dl dl _ 
— (• ;j?X + dx dy dz = — V • I dx dy dz . (7) 
q ox oy oz' ' q P 

Equation 7 now becomes the last term on the right hand side of Equation 1. 

Substituting these values into the continuity equation, one obtains 

||- (s - r) - |v • T . (8) 

The following quantities will now be defined : 

p^ = equilibrium hole density in n-type region 

p' = total hole density in the n-type region (9) 

P - P' - Pn = excess holes density 
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Also, the assumption will be made that the number of excess holes will de

cay with the characteristic lifetime (T ) which is independent of the con

centration. The following may now be written : 

Pn - P' 
g - r » —^ . (10) 

P 

The continuity equation now becomes : 

St * " IT " q V ' Xp + gp ' (U) 

where g^ represents the net rate of hole generation due to external effects 

such as photons, etc. In this thesis, this term will be neglected. 

If a semiconductor region is under the influence of an electric field, 

the hole current is given by (l): 

Ip = drift current + diffusion current 

= q Hp E* (p + pn) - q D Vp . (12) 

Substituting this into Equation 11, 

^ - M.p V • F(p + pn) + Dp V2 p . (13) 

For the investigation here, only current flow in the x direction will be 

considered and thus Vp may be replaced by By using the following re

lationships 

z => j— = (Defined), 

? dptP 

T = ~ (Defined) , (14) 
P 
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and 
ID 

= —% (Einstein's Relationship). 
P kT 

Equation 12 becomes 

^=^-|-fL ̂ -p. Where f = ̂  . (15) 
dz * kT 

This equation, which is commonly known as the diffusion equation, will be 

used throughout this thesis to determine the concentration of excess holes 

during the reverse transient. 

B. Error Function Approximation 

When a current is specified as a boundary condition of the diffusion e-

quation, the solution will always contain error function terms. Since the 

diffusion equation predicts the current flow during the entire switching 

period, one might conclude that the error function will be in evidence in 

the results throughout this thesis. If no attempt is made to replace it 

with a more easily handled expression, the results will appear in the form 

of integrals or infinite series and will be of limited practical use. With 

this in mind, an approximation to the error function will be obtained. To 

prevent this approximation from seriously limiting the accuracy of the re

sults, the procedure will be made available such that any degree of ac

curacy desired may be obtained. 

A polynomial approximation for the error function is given by 

Hildebrand (4). However, this series is very slow to converge for certain 

values of the argument. The convergence may be improved by defining a dif

ferent polynomial for various ranges of the argument. However, when an 
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entirely different series is used for exclusive range, it becomes awkward 

to apply to a general analysis where the argument may take on all values. 

A more convenient form for the approximation is the exponential. This 

is because the exponential, or a series of them, is easily ahndled in the 

differential equations encountered in this analysis. This form is also sug

gested by the fact that (l - e"x) is a rough approximation commonly used 

for the error function of x. The procedure to obtain an approximation of 

the following form will now be considered: 

. N.. a.x 
erf x « y C. e 1 for 0 < x . (16) 

i = 1 1 

Intuitively one can reason that all the a's will be negative or zero 

and the C's finite. However, if this is to be a general representation 

negative values of x must be considered. Since the a's are negative, the 

sequence shown in Equation 16 will not be bounded for negative x. 

For-the consideration in this problem, the defining equation for the 

error function and the error function identities shown below will be used. 

r 2 
Error function of x = erf x = —=. J e"^ dy . (17) 

0 

Complementary error function of x = erfc x = 1 - erf x. (18) 

erf ( -x) s - erf x . (19) 

erfc (-x) = 1 + erf x . (20) 

These equations are illustrated in Figure 4. It now may be seen that the 

difficulty with the negative values of the argument may be overcome in one 

of the following ways. 
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1. In solving for the C's and a's in Equation 16 use values of 

erf (x) for both positive and negative values of x. In other 

words, match the curve from large negative values to large 

positive of x. 

2. Using the above identities, rewrite Equation 16 to take into 

account the sign change as follows : 

3. Carry out the calculations assuming the argument is positive. 

Then, with the use of the above identities, note the sign 

changes in the results that would occur if the argument were 

negative. 

In consideration of the above possible approaches one can conclude that 

the first would lead to matching the approximation to the error function at 

a great number of points. This would lead to such an enormity of calcula

tions that it must be ruled out. 

Although the sequence shown in number 2 will have the proper sign 

change to represent the error function for all values of the argument, it 

would be very awkward to handle in differential equations. If this rep

resentative were used, it would be necessary to state whether the argument 

were positive or negative before the differentiation could be performed. 

Because of this, the second approach has no advantage over the third. 

In this thesis, the third approach will be used. The exponential ap

proximation will be calculated for positive arguments of the error function. 

N 
C, e 
i (21) 



www.manaraa.com

19 

When this approximation is used in the differential equation, the solutions 

•will be obtained assuming the argument is positive. Once the results have 

been found the sign changes •will be noted for the case when the argument of 

the error function is negative. The exponential approximation may then be 

written as: 

N_ ax 
erf x = / C. e for 0 < x , (16) 

i = 1 1 

and 
_JL -a.x 

erf x = / - C. e 1 for 0 > x . (22) 
i = 1 1 

In obtaining this approximation, both the C's and a's in Equation 16 

will be assumed to be undetermined. One approach in finding these values 

is to minimize the square of the difference between the approximation and 

the error function as the value of each C and a is varied. Ey using com

puter techniques, these calculations may be carried out until the approxima

tion is within the desired accuracy of the error function over the speci

fied range. Because of the non-repeatability of the solution and the ex

tensive calculation which must be undertaken to improve the accuracy of the 

approximation, this approach will not be used here. 

Instead, a sequence of N exponentials will be set equal to the error 

function at 2H equally spaced points. Two It points are needed since each 

exponential has two unknowns; the coefficient of the term (C) and the co

efficient of the power (a). This procedure leads to exact solutions for 

the C's and a's with the approximation being equal to the error function at 

the selected points. This procedure, however, has the shortcoming that the 
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a's may take on all values (real or imaginary, positive or negative). But, 

for application in this analysis it is necessary for each a to be negative 

and real. Hence for use here, the value of the a's -which are nearest to 

the value dictated by the equations and yet are real and negative will be 

selected. 

The accuracy of the approximation may then be checked for all values 

of the argument. If the accuracy calculated is not great enough, more terms 

may be added to the approximation with two equating points added for each 

new term. This procedure yields itself quite easily to increasing the ac

curacy to any desired value by increasing the number of terms in the ap

proximation. This is especially true if a computer is available with sub

routines for sulution to II equations with IT unknowns. 

A complete outline of this procedure is shown in Appendix A. In this 

appendix a 4 term exponential series is calculated as an approximation to 

the error function. This approximation is tabulated in Table 2 and plotted 

in Figure 4. 

C. Forward Bias 

At the beginning of the forward bias period, a step of current 3^, is 

forced through the diode in the forward direction. This assumption does 

not limit the application of this material for most industrial use. The 

reason being that the equivalent external resistance (R^, in Figure l) is 

generally much greater than the forward bias resistance of the diode. 

With this assumption, positive carriers will be injected into the n-

type material at a constant rate. The motion of these carriers is governed 
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Table 2. Error function approximation 

1 + 3.9262e™I,7855x - 10.8287e""1,5725x + 5.8804e"1,11G0x̂  erf x 

x Approximation erf x Difference 

0.0 -.02210 .00000 -.02210 
0.1 .10435 .11246 -.00811 
0.2 .22303 .22270 +.00033 
0.3 .33275 .32863 +.00412 
0.4 .43290 .42839 +.00451 
0.5 .52333 .52050 +.00283 
0.6 .60420 .60386 +.00034 
0.7 .67587 .67780 -.00193 
0.8 .73887 .74210 -.00323 
0.9 .79381 .79691 -.00310 
1.0 .84136 .84270 -.00134 
1.1 .88217 .88021 +.00196 
1.2 .91693 .91031 +.00662 
1.3 .94627 .93401 +.01226 
1.4 .97082 .95229 +.01853 
1.5 .99113 .96611 +.02502 
1.6 1.00775 .97635 +.03140 
1.7 1.02114 .98379 +.03735 
1.8 1.03176 .98909 +.04267 
1.9 1.04000 .99279 +.04721 
2.0 1.04619 .99532 +.05087 
2.1 1.05067 .99702 +.05365 
2.2 1.05370 .99814 +.05556 
2.3 1.05552 .99886 +.05666 
2.4 1.05625 .9990 +.05725 
3.0 1.04862 .99998 +.04864 
5.0 1.01102 .99999 +.01103 

by the diffusion equation -which was derived previously as Equation 15. Most 

treatments of the solution of this equation consider only the steady state 

forward bias case, which permits letting dp/dT =0. In this treatment the 

time dependent solution will be found and the time of forward bias will be 

specified as T^. Considerations will then be made for the case of large 

(steady state) and also for small (transient forward bias condition). 
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For this forward "bias case, the hole density satisfies the following 

equation subject to the shown boundary conditions: 

dp-r d2p 

S~T = ̂ 2~ ~ P! (23) 

Pj(0, z) = 0 (24) 

ôl»i 
- ST = i? (as) 

z - 0 

and 

p (T, 00) = 0. (26) 
•I 

Equation 23 is the diffusion equation with the modification that f = 0. 

This term is dropped here since presently the case of no field intensity away 

from the junction is being considered. The case of a built in field will be 

considered later. 

The first boundary condition (Equation 24) states that at the time of 

application of the forward bias, there are no excess minority carriers in 

the n-type region. The second (Equation 25) defines the externally de

termined forward current. The last boundary condition states that the width 

of the n-type material is great enough that the excess hole concentration is 

zero at the n-type ohmic contact. 

To aid in solving the above equation, Laplace Transforms will be used. 

The time dépendance of the equation will be transformed and the differential 

equation in z solved. This solution will be a function of z and s (the 

transformed variable). The solution to the original problem then may be ob

tained by performing the Inverse Laplace Transform. 
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The calculation for the solution to the forward bias period is carried 

out in Appendix B. The following equation is the result : 

| e erre I. 
2 VIT * *2 /T 

PT(T, z) « ^  \e~z erfc (— v/~T) -eZ erfc (—— + /¥) 
 ̂ 1 o ./In r, AS" 

(27) 

In accordance with the prescribed subscripts, this will be denoted as Phase 

I. The values of T will be the normalized time of forward bias with T = 0 

being the time of application of the forward bias. 

From Equation 27, a plot can be made of the dimensionless quantity p/l^ 

as a function of z. This plot is shown in Figure 5 with the values for the 

time of forward bias being 0.0, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, and in

finity. From this plot it may be seen that the slope of the hole concentra

tion is a constant at the junction for all values of time. This, of course, 

is due to the diode current during this period being a constant. 

For large values of T (greater than 3), the hole concentration shape 

assumes a decaying exponential. This also may be seen by letting the value 

of T approach infinity in Equation 27. This would correspond to the steady 

state forward bias condition. From the error function identities shown prev

iously, the following is the result. 

p(z) = Ip e~Z . (28) 

The correspondence between this equation and that given by other authors 

may be seen by noting that our (defined in Table l) is L^/qD^ times the 

actual current density. Since this current density is given by Middlebrook 

(10) as 
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Figure 5. Excess hole density during forward bias 



www.manaraa.com

(29) 

(30) 

D. Reverse Transient Storage Time 

As mentioned in the preceding section, excess holes are injected into 

the n-type region during forward bias. When the reverse bias is applied, 

these holes remain in the vicinity of the junction and serve as current car

riers in the reverse direction. For a finite period of time, the diode be

haves as a short and the junction is not able to develop a reverse voltage 

across it. 

Since the junction voltage will be positive and small in magnitude, 

the current will be a constant determined by the applied reverse voltage 

and the external circuit resistance. Hence, this period is sometimes re

ferred to as the constant current phase of reverse recovery. Here, however, 

this period will be denoted as the storage time since the actual phenomena 

is one of removing stored charges. 

At the time the concentration of excess holes at the junction becomes 

zero, the junction voltage becomes negative and begins to rise toward the 

value of the reverse applied voltage. This terminates the storage phase 

and the magnitude of current begins to decrease. 

1. Following a steady state forward bias 

Shown below is the diffusion equation with the applicable boundary con

ditions : 

25 

qVJ 

Jp - J ^ 

Equation 28 may be written in the more familiar form of 

Ï5F P = Pn (ek - 1) e I2> . 
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^11 ^ PII 
ÔT = ̂ 2 PII ' (31) 

Pn(°» z) = V"2 ' (32) 

dp, 
•II 
ôz = (1% is negative) , (33) 

z = 0 

and 

PH (T, «) = 0 . (34) 

The first condition (Equation 32) is the carrier concentration after a 

steady state forward bias; the second condition (Equation 33) imposes an 

externally determined current 1^ and the last condition ( Equation 34) is the 

specification of long n-type material. 

This equation may be solved in much the same manner as for the forward 

bias case. The complete solution is shown in Appendix C with the following 

as the result : 

PII(T». z) = 2 ̂  [e"Z erfc (g-y^ - /T) -eZ erfc + /T)] 

+ Ip e"Z . (35) 

This equation represents the excess hole concentration as a function of 

distance through the crystal (z) and time (T) of Hiase II. The time T = 0 

is taken as the time of application of the reverse bias. 

To determine the storage time the boundary condition that p(Tg, 0) = 0 

will be used. Using this condition, Equation 35 reduces to 

0 = -9—^ [erfc (-/F) - erfc (/?,)] + ̂  • (36) 
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In accordance -with the error function identities shown earlier, the above 

may be written as 

0  -  -  V  +  ̂  '  ( 3 7 )  

•which become 

s ' 
erf/T" = = =r~ . (38) 

Using the definition of the symbols this may be written as 

f5s 
erf / j- = YT~Q (39) 

P 

where 6 is the magnitude of 1^/%^,. 

As might be expected, the length of the storage time is related to the 

amount of stored charge at the end of the forward bias by the 1^ term, the 

rate of removal of this charge by (i^) and the average lifetime of these 

charged carriers (T^). This relationship is plotted in Figure 6 and tabu

lated in Table 3. 

Obtaining the storage time is not the only consideration during this 

period. Since the diode cannot be considered in a steady state reverse 

bias until all of the excess minority carriers are removed, the remaining 

stored charge also must be considered. 

Due to the constant current feature of this phase, the slope of the 

hole concentration at the junction will be a constant and determined by 3^. 

If the reverse current is very large, this slope will be great and the con

centration will rapidly go to zero at the junction. However, in this case 

the carriers out in the n-type material will not have had time to diffuse 
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Table 3. Storage time tabulation 

Reference equation: erf /IF = j 

| = 5  ^  5 * 5  ^  

200.0 .005 .9950 1.998 3.95 

100.0 .01 .9901 1.827 3.34 

50.0 .02 .9804 1.65 2.72 

40.0 .025 .9756 1.592 2.54 

25.0 .04 .9615 1.463 2.14 

10.0 .10 .9091 1.196 1.43 

5.357 .187 .8427 1.0 1.0 

5.0 

o
 

CVJ 

.8333 .978 .966 

4.0 .25 .8000 .908 .824 

3.0 .33 .7500 .813 .661 

2.5 .40 .7143 .755 .570 

2.0 .50 .6666 .684 .468 

1.5 .66 .6000 .595 .354 

1.0 1.0 .5000 .477 .228 
CO CO 

1.5 .4000 .3708 .1376 

.5 2.0 .3333 .305 .093 

.4 2.5 .2857 .259 .0672 

.33 3.0 .2500 .225 .0506 

.25 4.0 .2000 .1792 .03215 

.20 5.0 .1667 .149 .0222 

.10 10.0 .0909 .0807 .00651 

.01 100.0 .0099 .009 .000081 

out and a large percentage of the charge will remain at the end of the 
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storage time. 

If the reverse current is limited to a small value, the hole concen

tration slope at the junction trill, be small and consequently the storage 

time long. However, only a small portion of the stored charge remains at 

the end of the storage period. 

This discussion is illustrated in Figures7 and 8. Figure 7 shows the 

variation of hole concentration during the storage period. This plot is 

made for a storage time of Tg = 0.2 which corresponds to a value of 0 = 

1.115. The points are obtained by using the value of = 1.115 in E-

quation 35 and calculating p(z) for T = 0, 0.05, 0.10 and 0.20. 

Figure 8 indicates the amount of holes remaining in the n-type material 

after a storage time of 0.0, 0.05, 0.10, 0.20 and 1.0. The points were e-

valuated by using the corresponding values of 0 in Equation 35 and calcu

lating p(z). 

2. Following a finite forward bias time 

In the section on Forward Bias, an expression for the excess hole con

centration was derived. If the forward bias pulse is applied for a finite 

time of Tp, the carrier concentration may be found by letting T - T^ in E-

quation 27. Upon this substitution, the following is obtained: 

Pt(Tf, z) = [e"Z erfc ( Z - /t^) 

- eZ erfc + V%) ] • (40) 
2^ ? 

If the forward bias is terminated at time T^ and a reverse bias is ap

plied, Equation 40 will become the initial concentration for the storage 
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.0 

T représente the time of reverse "bia; 
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Figure 7. Minority carrier concentration during storage time 
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Figure 8. Remaining stored charge at the end or the storage period 
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phase. This may be represented as Pj(Tp, z) = Pjj(0, z). 

To analyze the storage phase under this condition, Equation 31 will be 

solved with the boundary conditions being Equation 33, Equation 34 and the 

following equation: 

pTT(0, z) = [e~Z erfc (— VtJ 
2 /TF F II 

- ez erfc (—-— + VC,)] • (41) 

These equations are the same as for the steady state forward bias case ex

cept for initial minority carrier concentration (Equation 41). This one 

difference, however, make the equation much more difficult to handle. Be

cause of this, the exponential approximation will be used to replace the er

ror functions appearing in the boundary conditions. 

Whenever the approximation is employed, the general series will be used 

in the analysis. Once the results are obtained, the terms of the approxi

mating series will be substituted in from Appendix A. Equation 41 then be

comes 

Pn(0,z)̂  [a- (1 - £ (.)Cie(',â '^, 

z 
ai(27f;+ ̂  1 

- e (l - y C e )j (42) 
i = 1 

Where the sign in ( ) are to be used if/T^, > z/2 /T^« To simplify this and 

other expressions in this thesis, the following will be defined 
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ax 
C. e = erfc x = 1 - erf x, "with C = -1 and a = 0 • (43) 

i = 0 1 

Hence, Equation 42 may be written as 

» (-'ai(r% - -%) 

+ e (1 - } (-) C e )] . (44) 
1 = 1 1 

The solution to Equation 31, with boundary conditions Equations 44 and 

34, may now be obtained. This complete solution is carried out in Appendix 

D with the following result : ^ ^ 

y.,.1 — £(T*- ^' " ' 
J"L * 2 

(-)&. (-)a. 

r -z(27Ç " 11 z (-)a Z(27^ " 11 
[e erfc ( ( l) /T) - e 

2 \Zt" 2/Tf 

(-)a. . N a. VtZ 
(erfc (g-^ - 1)VT] -2)] - 2Zo (-)Ci e 1 

[(575-+ x)2 - 1 r "z(27T„ + 1) _ a. 
F 

[e F erfc (— (—— + l) /T) 
2/T 2VTf 

Z(^7W" + !) 

-e F (erfc [ — + + 1) /T] - 2)]} - ̂  [ e'2 

2s/T 2 v/Tp 

erfc (— </¥) - eZ erfc (-^— + /T)] . (45) 
2/T 2/T 
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•where the sign in ( ) is to be used for i > 1 if g ̂  • 
F 

Also in Appendix D, it vas shown that when the value of was permitted 

to approach infinity, Equation 45 reduced to Equation 35 of the steady state 

forward bias case. 

Due to the exponential terms appearing one might be concerned about the 

behavior of this function as T-»00. Upon consideration of this equation, it 

may be seen that the boundness of the function is threatened yhen/TÇ < 

2 Ij1 . Since then 

a. p 
(g-^- - 1) - 1 >0 with all a's < 0. (46) 

We will then be concerned about terms of the following form: 

e(b - 1)T j- gbz erfc + b /Y) - e-l3Z erfc (^=- - b /¥)] , (47) 

where |b| > 1. To analyze this expression for large values of T, the fol

lowing asynoptic expressions for the complementary error function term will 

be used: 

2 
-b T 

erfc b /~T for b > 0, (48) 
b /ïrT 

and 

2 
-b T 

erfc (-b Vt) 2 - for b > 0. (49) 
b /itT 

These were derived by finding a function whose ratio to the complementary 

error function approached unity for large values of the argument. 

It now may be seen that for a finite z and very large values of T, 
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Equation 47 becomes 

(b2 - 1)1 , bz -b2T -bz -b2!. 
^ +2 S > . (50) 

b /jtT b /ÏTT 

Which becomes 

bz -T -bz -T 
" 0 as T -• =° , (51) 

b yïtT b -fitT 

and hence the equation is well behaved. 

The storage time may be found by letting p^(Ts, 0) = 0. Equation 45 

then reduces to 

if (+)a [<27^ - ̂  - 11 Ts 
(-K- 2 

. . 
P(Tg, 0) = 0 = - — yi" c,e 

v- i ' F ' F 

i^O i 

a. 

(-)a„ M a,/T ?27ë:+1) -1]I: 
e 1 Fe P 

(6rf ( = 7Ç -lWTs +1)- ̂  Ci 

a. . 
(erf (•£-+-+ 1)/¥ + 1)J + ̂  erf >/T"s ; (52) 

F 

where the signs in ( ) are to be used for i > 1 ifVt^, > z/2 /ÏÇ. 

It may be readily shown that if T^,-*™ the value of Tg is determined 

by the error function relationship of Equation 38, and if Tp-»0 the value 

of Tg is also zero. These, of course, are the proper end points for Tg. 

Equation 52 then may be used to calculate the storage time after a 

forward pulse of duration T^. This may be done by substituting in the 

values of 1^, 3^ and T^. The values of the a's, C's and N are determined 

from Appendix A. The value of Tg may then be calculated by trial and error 
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using computer techniques. 

Although this procedure will give the proper value of Tg for a given 

Tp and 6, it would be beneficial to have a more easily handled expression. 

For this purpose, the following equation will be used to represent Equation 

40: 

p(TF, z) ~ m e"rZ . (53) 

To illustrate that this is a reasonable choice, Equation 40 is plotted 

on a natural logarithm scale in Figure 9. Also on this plot is shown the 

approximation. 

The values of m and r for a given T^ are shown in Table 4. Although 

these parameters were only calculated for eight discrete values of T^, this 

procedure could be used to obtain an approximation for any value of T^. 

Using this approximation, the diffusion equation may be solved with 

boundary conditions of Equations 53, 33, and 34. This solution is carried 

out in Appendix E with the result being 

PIZ(T) z) = ̂  [e"Z erfct^- /T) - <f erfc *<TT)l 

+ ine-(l-r2>VZerf=(^+r/T) 

- e"rZ(erfc (g^ - r /¥) - 2)] . (54) 

To show that this function is well behaved for r > 1 and T->°°, the 

asymontic expressions of Equation 48 and Equation 49 were again used. When 

this is done the terms of concern in Equation 54 become 
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1.0 

Exponential approximation 
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Figure 9. Exponential approxiiaation for p(Tf ) 
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Table 4. Exponential approximation for p(Tp, z) 

"Where ^— = m e rZ is an approximation for the following 
"T 

^- = ̂  [e Z erfc -/T)-eZ erfc (gTr + 

T m r 
Approximate 
Maximum Error 
0 < z < 1.0 

0.0 0.0 CO 00.0# 
0.1 0.35 4.0 16.0# 
0.2 0.47 2.75 10.0# 
0.5 0.69 1.84 8.4# 
1.0 0.85 1.35 4.5# 
2.0 0.96 1.10 2.5# 
5.0 1.0 1.0 0.5# 
00 1.0 1.0 0.0# 

?» 
-rz -T 

(e + 
r VjiT 

rz -T 
—) +0 as T 

r /ïtT 
(55) 

To determine the storage time, the "boundary condition that p(Tg, 0) = 

0 will be used. Imposing this condition, Equation 48 reduces to 

2 
erf f¥s = - m Ip e" 1̂ " r T̂s (erfc r /ÏT ). (56) 

The effect of the time of forward bias upon storage time is shown in the 

plot of 9 versus Tg in Figure 10. The fixed parameter here being Tp. This 

plot was constructed by selecting a value of T and then finding the value 

of r and m from Table 4. The points then were calculated by picking a 

value of Tg and calculating ©. 
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T represents the normalized time of forward "bia; 
.0 

1.0 
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1 

.02 .05 .1 . 2  .5 

Normalized storage time (T,) 

Figure 10. Storage time following a finite forward bias period 



www.manaraa.com

41 

E. Reverse Recovery 

At the end of the storage period, the concentration of excess minority 

carriers at the junction has deminished to zero. However, as shown in the 

previous section there remains a quantity of these carriers in the n-type 

region. Before the diode will reach a steady state reverse bias, this con

centration must be reduced to zero throughout the entire n-type region. 

The junction current does not change instantaneously from the value 

during the storage phase to the reverse saturation current. Instead, it 

decays gradually in a recovery tail. This current is made up of essentially 

two components. First there is the diffusion current associated with the 

removal of the excess hole concentration mentioned above. Second, there is 

a current associated with the charging of the depletion layer capacitance. 

The capacitance current arises from the fact that at the beginning of this 

phase the junction voltage is zero whereas at the end of the phase the junc

tion voltage is the magnitude of reverse voltage in the circuit. The change 

in voltage across the junction capacitance, "which is itself a function of 

the voltage, results in capacitance current. 

Usually, the capacitance current is neglected and only the diffusion 

current considered. In this analysis, however, both of these current 

components will be considered on a superposition basis. In other words the 

diffusion component of current will first be calculated and then the cor

responding magnitude of capacitance current will be investigated. If the 

capacitance current is comparable to the diffusion current, it may be added 

to obtain the total junction current. 
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1. Diffusion current 

The diffusion current associated with the removal of the remaining 

stored charge will he found for the following case : 

( 57 )  

With the boundary conditions being 

Pm(°> z) = 2 erfe (g /T " 

- eZ erfc (g-7— + /Tj] + ̂  e"Z, (58) 

Pttt(°°> z) = 0 , (59) •III 

and 

Pm(T, «) = 0. (60) 

Equation 57 is the diffusion equation for the case of no potential 

gradient in the n-type material. 

From the first boundary condition one sees that here the analysis is 

being carried out for a reverse bias following a steady state forward bias. 

Hence this initial hole density was found by letting T = Tg in Equation 35. 

The second boundary condition, Equation 59, needs an explanation since 

it is to some extent an approximation. By definition the quantity p(T, z) 

is the difference betvreen the actual hole concentration and that of the in

trinsic hole concentration (p^). Since at steady state reverse bias the 

hole density at the junction (z = 0) is zero, the value of p^^O», °) should 

be -p^. Also the slope of Pjjj at the junction should be related to the 
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reverse saturation current (i^). , 

As shown from the boundary conditions, however, the concentration of 

holes has been assumed to reduce to the equilibrium value pn and remains 

at this value for all z. This assumption has the effect of neglecting I 

since here the magnitude of current will reduce to zero rather than Ig. If 

it were desired to consider this saturation current, the magnitude of cur

rent below Ig could be set equal to I with very small error in the current 

waveshape. 

For the solution to the Equations 57 through 60, the Laplace Transform 

and the exponential approximation to the error function was again used. 

This complete solution is carried out in Appendix F with the following re

sults: (-)a. p 

Piii(I)Z> . Vi f  * e ^ ' 1 '  ' 1 1 T  

i = 0 2 

( -)a. (-)a. 

-z(57T - 1) . (-)a , z(27T: " 1) 
(e erfc - (-^ - l) V¥]+ e 

S a_. 

(-)a. _JL a./ÔT lv2 VT 
5 e S 

Kôjr + D2 - il T 

(erfc [^-+ (g-^ - 1) /T"] - 2)) - C^e 1 

-z (g^r+l) a. T-+1) 

(e S erfc[^- + D JF]+ e s 

s 

(erfc [gf?4* (g/y ' + 2))1 - 7T" [ 6 Z erfc (gp ->/T) 

+ eZ erfc (^.+/T)] + e"Z (61) 

where the signs in ( ) are to be used when /ÏF > and i > 1. 
S 
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Upon examination of this equation one sees that there exist exponential 

terms •which at times have positive exponent containing the variable T or z. 

To shov that the above equation is veil behaved for 1 values of T and z 

each set of terms vere checked for boundness in Appendix F. 

Although the holes density is of interest, the magnitude of reverse 

current floving during this phase is of greater interest. This may be ob

tained by performing the following: 

This calculation is carried out in Appendix F. It is of interest to compare 

z/2 ST and Equation F-15 reduces to 

-T 
I (T) = - I [erf S T +  - 1 ]  , (63) 
A /itT 

which agrees with that derived in two cited papers (6, 13) and with a simi

lar expression, which includes Ig, derived by B. Lax and S. F. Neustadter 

(62) 
z = 0 

the case of T =0 with that derived by others. For this condition, -J T < 
s s s 

( 8 ) .  

For the general case of Tg greater than zero, the current during Phase 

III is given by 

(64) 
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For assurance of the validity of this equation, the end points may he 

checked. For T = 0, it may be shown that 1.^(0) = and for T = 00, 

Ij j j  = 0. These are the proper boundary conditions. 

For a steady state forward bias, the entire current waveshape has now 

been determined. Hence, for a given value of and 1^, the storage time 

may be determined by Equation 38 and the current waveshape during the re

covery phase by Equation 64. These equations are illustrated in Figure 11. 

2. Junction capacitance considerations 

Since the current considered here is in the same direction as the dif

fusion current, one can, in effect consider a capacitance placed in paral

lel with the diode. This consideration is illustrated in Figure 12a. When 

such a model is used, the following equations may be written for the cir

cuit: 

V = (Ic + Ij) R + Vj , (65) 

and 
dvj 

1C- CdT+VJ§ . (66) 

Where V is the externally applied reverse voltage present in the circuit, 

I- is the junction current due to diffusion and I is the current due to 
J V 

the creation of the space charge layer. To investigate the validity of 

neglecting 1^, its maximum value will be found and compared to the total 

diode current. The maximum capacitance current will occur when C and 

dVj/dt are a maximum. These in turn will occur "when Vj = 0. 

For these calculations the equation for Vj, derived by several authors 
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Figure 11. Reverse bias current following a steady state 
forward bias 
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Figure 12. Capacitance current consideration 
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vill be used (4, 6). This equation is 

Vj = in (1 + i - lpi ^ erf /T). (67) 
s s 

•Which gives 

(I^ ' Ig) 2 8 1 . (68) 
q Tp y«T (Is + Ip + (3^ - Ip) erf /T) 

Bat vj = 0 -when T = Tgj and with the aid of Equation 38 the ratio of imvi-miTm 

capacitance current to total current is given by 

To illustrate the validity of neglecting 1^, Equation 69 has been plotted 

in Figure 12b. For this plot the three parameters of the diode (i.e., C, I 

and Tp) were lumped together as the fixed parameter of the plot. 

From this figure one can see that if C > I^T^j the capacitance current 

may be neglected with little error. This specification is true for most 

computer and switching diodes on the market today. However, due to recent 

methods of decreasing the minority carrier lifetime (T^) some of the faster 

diodes have a capacitance current which is a greater portion of the reverse 

current. To cite an example; the ED 2967, which is advertised by Hughes 

Semiconductor as an ultra fast switching diode, has capacitance of 4 npf, I 

of 40 x 10 6 amps and a T^ of 26.4 x 10"9 sec (5). With these values C is 

approximately 4I^T^. Hence for a 0 of 1 the ratio of I^/l^ would be approx

imately 0.4. 
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F. Potential Gradient in a Finite Length N-ïype Region 

As derived previously in this thesis, the following equation governs 

the distribution of holes in the n-type semiconductor material: 

= Lg . f L ^ - p, with f = —| . (70) 
oz * kT 

In this equation represents the potential gradient to "which the holes 

are subjected. 

In the previous analysis f was taken to be zero since no field was con

sidered away from the junction. Furthermore, the n-type region will be con

sidered to have an ohmic contact with an arbitrary surface recombination 

velocity (S) at a distance W from the junction. The mathematical model under 

consideration in this section is shown in Figure 13a. 

For the steady state forward bias condition, dp/dT = 0 in Equation 

70 and the boundary conditions become : 

g - f L p P = - I p a t z  =  0  (71 )  

and 
, SL 
JD + (__£ _ fL ) p = 0 at z = W . (72) 

P 

Equation 71 specifies the forward current (i^) and Equation 72 states that 

the diffusion current plus the drift current must equal the recombination 

current at the ohmic contact. 

The complete solution to this set of equation is shown in Appendix G 

with the result being: 
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Figure 15. Diode vith a drift field 
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fL / f^L 2 

p(z) = - *p 

fL / f^L 2 / ST2 fL SL 
(~2E +/1 + —%G-)(A + —i2 ^ + 5^ ) 

P 

fL / ST2 

SL fL / A 2 *|/ 1+ -J2- (z - ao 

+ (q-^ - -/1 + ) e 
p 

(73) 

fL / f2L 2 fL / f^L 2 SL -2Wy/1 + -5, 
+ + /l + 4

P )(-g£ + V1 + 4
g - 5^)e 

P 

For purposes of comparison to that derived previously, the long n-type 

region will be considered. When W is allowed to become very large, Equa

tion 73 reduces to 

fL I ?2L2 
(-^ - /l + ) z 
e 

p(z) = If I A8 « ' (74) 

A  + 1 2 - + - f  

The dimensionless quantity p(z)/l^ is plotted in Figure 13b for fL^ = +1.0, 

0.0, and -1.0. From this figure, it may be seen that for the negative 

drift field has a larger hole concentration at the junction but a faster 

decay rate. This is because the negative field tends to force the holes 

back toward the junction, whereas, the positive field aids the hole flow 

for forward bias. 

For the finite length n-type region, all factors in Equation 73 must 
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be considered. This case is plotted in Figure 14 for SLp/Dp = 1, 10, and 

100 with fLp = +1.0, 0.0, and -1.0. For this plot the value of W vas 

taken as 1.0. Hence, the actual length of the n-type region is equal to 

the diffusion length of holes. From this plot one sees that the ohmic 

surface recombination velocity (s) has its greatest influence vhen the drift 

field is negative. This is because there will be a larger concentration 

near the ohmic contact to be influenced by this parameter. 

For the reverse bias phase the storage time will be calculated for 

two cases. First, the storage time will be found for no drift field in a 

finite length n-type region. Second, a long n-type region with a specified 

drift field will be considered. 

1. Storage time considering no drift field 

To obtain an usable solution for Tg, the value of W will be specified 

as greater than or equal to 0.5. The storage time calculations are carried 

out in Appendix G with the following result : 

1 + SLp/Dp + (1 - SLp/Dp) e"Z* 

1 + SL /D - (1 - SL /D ) e"2W 
erf T — 2—E E—E (75) 

s 1 + 9 

Specifying SLp/Dp = 10, this equation is plotted in Figure 15 for W = 0.5, 

1.0, 2.0 and infinity. One interesting thing seen here is that for a speci

fied value of W there is a limiting value of Tg. This results from the fact 

that the recombination at the contact would reduce the hole concentration 

at the junction; even if the diode were open circuited. 
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Plot made for W * 1.0 
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Figure 14. Finite length n-type region vith a drift field 
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Figure 15. storage time versus 9 for a finite length n-type region 
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2. Storage time for a long n-type region 

For a long n-type region with a drift field, the storage time is cal

culated in Appendix G and given by: 

From this equation a plot of 9 versus Tg is shown in Figure 16. This figure 

shows that the storage time for the negative field is greater than for the 

no-field or negative field condition. This difference, however, is not as 

great as one might expect. This is due to the fact that even though there 

is a larger concentration of holes at the junction for the negative field 

case, this field aids in the removal of these holes. The opposite is true 

for the positive field case. 

Although the storage time is greater for the negative field, only a 

small hole concentration will remain in the n-type region at the end of 

the storage period. For the positive field, Tg is less but a large portion 

of the hole concentration remains. Hence, the magnitude of current at the 

end of the storage phase will rapidly decrease for the negative field but 

slowly reduce for the positive field, case. 

fL / f2! 2 rfL -T / f2L 2' 
1 + q = ("2 +V 1 + —I-7^ (e S-l)+Vl + —4E-

(76) 
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v. DISCUSSION 

The first mathematical model considered in this thesis vas a diode vith 

a long n-type region and no drift field. The minority carrier density and 

diffusion current were found for the entire switching transient. During 

forward bias the current is equal to I^ and the hole density is given by 

Equation 27. For the storage time the current is indicated by 1^ and the 

carrier density by Equation 35. And finally for the recovery phase, the 

current is given by Equation 63 and the hole density by Equation 61. With 

this material available, the circuit designer can predict the time (after 

reverse bias) for a diode to reduce the magnitude of reverse current to a 

specified amount. 

The storage time was also determined for both the steady state and 

finite forward bias time. For the finite forward bias time an exact solution 

and a more easily handled approximation were obtained. 

The diode with a drift field in a finite length n-type region vas then 

considered. Both the storage time and hole density were calculated for 

this model. The relation of storage time to the length of the n-type re

gion is given by Equation 75 and to the drift field is given by Equation 76. 

This author feels that the most significant contributions of this the

sis are: 1. The acquisition of an equation for the current following the 

storage phase, 2. The consideration of the reverse bias following a finite 

forward bias pulse, and 3. The investigation of a finite length n-type 

region with a drift field. 

There are primarily three limitations to the application of this mater

ial. First, an exponential approximation vas used for the error function in 
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the derivation of this material. Second, a one dimensional flow across 

the junction was assumed. Third, a constant lifetime of minority carriers 

was assumed. 

The error incurred in the exponential approximation can be made very 

small by increasing the number of terms in the series. For the four term 

series used for illustration in this thesis, this error was less than five 

percent for most values of the argument. 

The assumption of one dimensional flow will only be in jeopardy when 

the diode being considered has a small cross-sectional area at the junc

tion. There will then be a component of recombination current directed 

toward the surface. However, it would be difficult to make a general a-

nalysis considering this surface recombination. This is because a separate 

analysis would have to be conducted for each individual geometry considered. 

The variation of minority carrier lifetime was discussed earlier in 

this thesis and in general can be considered a second order effect. 

With these reservations, the material of this thesis can be used to 

predict the reverse response of diodes for the various cases considered 

herein. 
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VIII. APPENDIX 

A. Error Function Approximation 

The error function is to be approximated by the following closed series 

ax ax ax 
erf x^^e + C^e + C e ̂  . (A-l) 

This is equivalent to 

erf x %G1u1X + + C^u^ .... C^u^ ; (A-2) 

a, 
where u^ - e 

The error function "vri.ll be equated to the approximation at N equally 

spaced points i.e., x = xQ, x^, 2x^, 3x^ . . . (N - l)x^. Since Equation 

A-2 is to be satisfied at these values of the argument, the following e-

quations will necessarily be true: 

C1 + °2 + C3 Cn = erf x0 > 

C1U1 + C2U2 + Vs Cn"n = *1 ' 

°A2 + C2U22 + °3U32 CnUn2 "**<*!> (A-3) 

and C u™"1 + C.u.""1 + C u™"1 . . C u M"1 • erf (H - 1) x, . 
11 22 33 n n jL 

If the values of u^....u^ were assumed, or preassigned, this set would com

prise N linear equations of n unknowns C^....C^ and could be solved exactly 
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for M = n or approximately by the least squares method for N > n. 

However, in general the u's are to be determined and at least 2n e-

quations are needed. A further difficulty is that the equations are non

linear in the u's. To overcome this difficulty, a substitution will be 

made which will result in two sets of n linear equations. (4) 

In this procedure u^, ug, . . . u^ will be the roots of the algebraic 

equation 

un - ce un_1 - aun~2 a - A = 0. (A-4) 
1 2 n-1 n 

The left hand side of A-4 being identified with (u - u_^)(u - u^)(u - u^) 

,(u - u ). It remains now to obtain the oz coefficients. To do this x n 

the first equation of A-3 is multiplied by (X , the second equation by 

1, .... the nth equation by a and the (n + l)th by -1 and the results 

added. In view of the fact that all u's satisfy A-4, the result will be as 

follows : 

erf nx^ - erf (n - l)x^ . . . a ^ erf ̂  " an erf xQ = 0. 

(A-5) 

A set of N-n-1 additional equations of similar type may be obtained 

in the same way by starting successively with the second, third, . . . 

(N-n)th equations. Following this procedure, we see that Equations A-3 and 

A-4 result in the following set of equations : 

erf (n-1 )x^ + erf (n-2)x^ + • • an erf (xQ) = erf nx^ , 

a erf nx^ + erf (n-l)x^ + • • an erf (x^) = erf (n + l)x^, 

(A-6) 
and cx^ erf (N-2)x^ + erf (N -3)x^ . . Q^erf (N-n-1 )x^ = erf (îï-l)x^. 
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The values of the error functions may be found from tables and the above 

equations solved exactly for N = 2n or solved approximately for N > 2n. 

The coefficients of the factorable Equation A-4 have now been found. 

Upon factoring this equation, the values of u^, u^, . . . u^ will be 

known. These values then may be substituted back into Equation A-3 and 

the n equations solved for the C's. Since the a*s may be found from the 

u's, Equation A-l is now completely determined. 

B. Forward Bias 

The solution to the following differential equation is to be obtained 

ttp-r 52p 

5ri"l?-pi • (B-1) 

The boundary conditions being 

p(0, z) = 0 , (B-2) 

dpi I 
5T = Xp , (B-3) 

z = 0 

and p (T, 00) = 0 . (B-4) 

To solve Equation B-l subject to the above boundary conditions, the 

Laplace Transform will be used. Designating the transformed dependent 

variable by a capital and letting s be the independent variable of the 

transform the following is obtained: 

,2 
sP = 2_E - P , (B-5) 

dz 
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z = 0 

and 

P(s, oo) = o . (B-7) 

The solution of this equation has the following form: 

P(s, z) = 1 + s + a": + s _ (g_8) z vT+s -z yr+ s 
; + Cg e 

From boundary condition B-7, C is found to equal zero and from the condi

tion B-6, Cg is given by 

c2 = rnzz • (b-9 ) 
s Jl + é 

Substituting these back into Equation B-8 one obtains 

P(s, z) = e-z VT+l _ (B-10) 
s Vl+~s 

The inverse transformation of this equation may be found with the aid of 

pair $825 given by Campbell and Foster (5). Using this transformation, 

p(T, Z) becomes 

P(T, z) = jr [ e_Z erfc (^ - /T) - ez erfc (^ + /T)] . (B-LL) 

C. Storage Period Following Steady State 
Forward Bias 

The solution to the following differential equation is to be obtained 
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The boundary conditions during this period being 

p(0, z) = Ip e"Z 

and 

- i .  
z — O 

p(T, 03 ) = 0. 

= ̂  

(C-2) 

(C-3) 

(C-4) 

Taking the Laplace Transformation and denoting the dependent variable with 

capitals, one obtains 

£-f - P(1 + s) = - Ty e"Z , 
dz 

dP 
dz 

3 

z = 0 

and P(s, 00 ) = 0 . 

(C-5) 

(C-6) 

(C-7) 

The solution to this equation is of the following form 

P(=, z) = c/ eZ ft*~B * C2' e"Z ft + S ^F (C-8) 

From the boundary conditions Cg and C^, is found to be equal to 

zero and Cg is given below: 

Oo'-(^-i) 1 
'S S yr+ 

(C-9) 

Hence, 

P(s, z) = -"-R " -"t -z \/1 + s IF -z ———— e - — e 
s \/l + s s 

(C-10) 
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It may "be recognized that the first term on the right is of the same form 

as that solved in Appendix B and the second has a well known inverse trans

form. Hence, in the time domain this equation becomes 

', z) = ^ [e"Z erfc - -/T) - eZ erfc + /T)] + I^e'2. (C-ll) P(T, 

D. Storage Period Following Finite 
Forward Bias Time 

The following equation is to be solved 

The boundary conditions being 

P l I(c4 (.- £  +^ 1. 11 d rz~o1 i=~ o 1 

(D-2) 

^11 
ôz 

= \ , (D-3) 

z = 0 

and 

PI;[(T, «) = 0 . (D-4) 

The signs in ( ) are to be used for /T^, > Z/2 VT^, and i > 1. After taking 

the Laplace Transformation, 

^ - (1 + -)P - sVZ ^ 
dz ^ i=~0 1 

a, (At + JZ) 

- H V ) , (D-5) 
i =~0 1 
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âP 
dz 

2 = 0  

and 

(D-6) 

P(s, °°) = 0 , (D-7) 

•where P is the transformed dependent variable. 

The complete solution of this equation has the form of 

P-QCS, Z) = C^E ~ + C^E 

N 
( y~ (-) 

i = 0 

zVl + s . _ -zVl + s 
2e 

(-)a. 

(±)ai ̂  ẑ 27fT" " 
C. e e F 

( - )a • p 
(7iri "11 "(1 + s) 

- y 
N 

ai 
a./E, z(-2TE+ 1 )  

C± e 1 F e F 

^ (^+lf-d+s) 

) - (D-8) 

From the boundary conditions D-6 and D-7 the values of and may be 

found. The inverse transform of this equation may be found with the aid 

of pairs $825 and $819 of Reference 5. This results in 
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(-)ai n\2 

IX ^ li = 0 2 

(-)a (- )a 

-z(27^: •11 z <-)ai z(2V^: -11 

[e erfc (g-^ - C2 ̂ jr - 1) i/T) - e 

(-)a. , M a. /TL 
(erfc f^+ (27^ " !) ̂  -2)]- (-)°i 6 

a 2 F 

Z'( 2V7TR~ + ̂  a. i t 
e F (erfc[Ar+ (^~ + 1)/^]- 2)1f - 7? [ e"Z (erfct^, + (g^- + 1) /¥]- 2)]} - ̂  [ 

erfc (GF̂ -1̂ ) - eZ erfc (̂ +Y¥)] , (D-9) 

where the signs in ( ) are to be used when /ÏÇ, > z/2 /T*f and i > 1. 

To illustrate that this equation is in accordance with the steady 

state forward bias calculation, Tp will be considered very large in Equation 

D-9. This results in 
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/ i 4 PH(T, z) = -
„ N a.VÏL z 

(1 - X— Cie 1 )(#- terfc (a7r + /T) - 2 
i — 1 

-z , H a./HL z 
V erfc (27t " ̂  ) + (1 + A_Cie 1 )(§- erfc (^+ /T) 

-z 
[erfc - /T) - 2 1 ) ] + ̂  [e~Z erfc (^- - /Ï) 

- eZ erfc (7^= + /T) ] (D-10) 

It may te seen that the above equation reduces exactly to that of the 

steady state forward bias case (Equation C-ll). 

E. Storage Period Following Finite Forward Bias Time 
(Using an Approximation) 

The following equation is to be solved 

dp] 
ÔT 
rII d PII 

2 " PH dz 

With boundary conditions being 

Pn(o, z) = n Ip e 

Ô P ' "  ^  

-rz 

•II 
3z 

z = 0 

and 

(E-l) 

(E-2) 

(E-3) 

PIX (T, °°) = 0 . (E-4) 
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Taking the Laplace Transform 

2 
- P (1 + s) = - m ]_ e~rZ , (E-5) 

dz 

P(s, «) = 0, (E-6) 

and 

dP 
dz s 

z = 0 

(E-7) 

The solution to this differential equation is 

e-z vrrr ^ e-z/m m e-r2 

*> - T~nm - (s + 1,r2)^ + (77T77) ' (E-8) 

The inverse transformation may be found vith the aid of #825 and #438 of 

Reference 3. When these are performed, the above equation becomes: 

P(T, z) = 7T [ e"Z erfc - y/T) -eZ erfc (ggr + /T)] 

+ -jp- e" 1̂ ' r [erz erfc r «/TO - e~rz (erfc - r VT) - 2] . 

(E-9) 

F. Reverse Recovery Phase 
(Diffusion Current) 

The solution to the following equation is to be obtained: 

- Phi • 0?-D 

With the boundary conditions being 
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P(0, 
* i~^~0 1 

- e ( Z_ cie S )]+ Ip e"Z , (F-2) 
i = 0 r 

P(T, 0) = 0 , (F-3) 

and 

p(T, °°) = 0 . (F-4) 

Taking the Laplace Transform 

dz d i = 0 1 

, J, ai(27T-+̂ ) 

-ez( £ C e s )] - IL e"z , (F-5) 
i = 0 * 

P(s, 0) = 0 , (F-6) 

and 

P(s, oo) - 0 . (F-7) 

The complete solution to this equation has the form 
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P(=, z> = C1eẑ TT
+ c2 e'2̂ 1 + 

( - )a. 

J_ (±)^i^g Ẑ 2VT ^ 

( 5Z (-)Çj e É ! _ y™ 
1= ° (-K 2 Arô 

(g^- 1) - (1 + s) 
s 
ai 

a. Vf z(27t"+1) 
C.e 1 e S -z 

)+IoT (F-8) 
a, 2 

^2\/!r + ~ C1 + s) 

The undetermined constants and C_ in Equation F-8 may be found by using 

boundary conditions F-8 and F-7. When this is done the inverse transforma

tion may be found with the aid of pair numbers 819 and 438 of Reference 3. 

The following equation is the result. (-)a. (-)a. 

P(^> = *£[ f~ ^ V' " l] 1 <e"Z<̂  
i=D ^ d 

(-)&! 

(-)a. (-)a. 
erfc [qJT " W" ~ + e S (erfcC27p 1 " ~2) ) 

s 
a„. 2 a_. 

,v¥- Kwl-+1) - ̂  T -<2jr+1> 
c/1 S ±__1_ (e " =rf=[^ 

l^o 2 a. 

z(27T+ 1) a 2vT ' a. , , I 
- (27T + ^ + e (erfc [^J- + (ojtjr + l) /t] - 2) )]-

s ' s 

[e"Z erfc(^ - >/¥) + eZ erfc +VT- )] + 1^, e'Z . (F-9) 

The signs in ( ) are to be used if /r > z/2/t" and i > 1. 
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Because of the numerous exponentials which may be raised to powers 

which contain positive coefficients times the variable, it seems beneficial 

to briefly illustrate the boundness of this equation. The terms of concern 

may be represented in the following form: 

t _ t b T C z 
A. —g— (e ̂  e 1 [2 - erfc + C± /t) ] ) (F-10) 

where 

Bi = (57T ' 1)2 " 1 and ci =(a7T - 1) ' 
S S 

If the B^'s are negative, it may be shown that Equation F-10 is well bounded 

for all z. This may be done with the aid of the asymptotic approximations 

given in Equation 48 and Equation 49 of this thesis. 

If the B^'s are positive and the C^'s are negative one may, for very 

large values of T, use the asymptotic approximation and write Equation F-10 

as t r B.T -C.2 T 

^ Ai ^ ,e ' ' (F-H) 
I c I i/rtT 

Mow from the definitions of B^ and C^, this equation becomes 

I - T -T 

~~ I^fe" ' <F"12) 

which approaches zero for large values of T. 

1. Current during the recovery phase 

Of prime concern during Phase III is the diffusion current. The mag

nitude of this current may be calculated by the following equation: 

(F-13) I= * Si 
z - O 
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Hence, the slope of Equation F-9 is to be found at the junction. In taking 

this derivative, the following equation will be used: 

2e-x2 
d(erf x) = ——:— dx . (F-14) 

vïT 

Following this procedure, the following equation was obtained 

««.^ [ &  < Vt,â  °1(̂ ;ll2-11T 
( t<£. x] 

s 

(-)a- (-)a (-)a 
(2 - erfc ( 2y^-' - l) /T) + ( - l) erfc [ -(-gyf l) /T"] 

2 -(S-1,2T . a./r r4+1,2-1]I 
, 2 e x , \ ^ _ x se T ~ ) + II =i= 1  

/îtT i = 0 

([ 2^+ l] (2 - erfc (^ + l) /¥) + (g4r + l) erfc [ - (^- + l) /t] 
S s s s 
a. 

-(g7§-+ I)2 T 
s 3L-. -T 

+ â_e j|- + ̂  (erfc /t"- erfc(-/T) - jË=~) + I_ . (F-15) 
VrtT J 2 T 

For the special case of Tg = 0, the signs in ( ) are not used and the above 

equation reduces to 

-T 
I(T) = - I_ (— + erf/T - 1) . (F-16) 

* Srfz 

For the general case of Tg > 0, the signs in ( ) are used. This results in 
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./T" [(2V¥"+ 1)2 " T M a 
1(1) - (Xj. - V ̂ Cie 1 e 5 

,;(^+1)2t ,a± ^ _/.t 
( + (ôTf + 1) erf (ôTffiT + 1) VT) 

/* t dV s s 

-T 
+ Ir - Ip (7=+ erf /T) . (F-17) 

/jtT 

G. Potential Gradient in a Finite 
Length N-%rpe Region 

1. Forward "bias 

The solution to the following time independent equation is desired: 

d2pT dp 
0 = —2 - fLP 5T - PI • (G-D 

dz * 

The boundary conditions being ~~ 

^ - fLp P = - Ip at z = 0 , (G-2) 

and 
, L S 
+ (_£_ - fL )p = 0 at z = ¥ . (G-3) 

az % P 

The solution to this equation has the following form: 

fL / 2 fL 
(-p^ +V 1 + -7e-)2 ("1^ - VI + —7e—)z (G-4) 

p(z) = Cx e + C2 e 

To simplify the writing of the equations, the quantities A, B, and C will 

be defined as follows : 

fL 
A =» -5^ (G-5 ) 



www.manaraa.com

80 

/ B =V1 + & , (G-6) 
4 

and 
SL z 

C = _E . (G-7) 

P 
The "boundary conditions (Equations G-2 and G-3) of the following two 

equations may be solved for the values of and C^. 

(A - B) C± + (A + B) C2 = Ip (G-8) 

(-A + B + C) e Â + B\ - (A + B - C) e Â " B̂ W Cg = 0 (G-9) 

Upon solution of these equations and substitution into Equation G-4, one 

obtains : 

pM - Xp (G-10) 
(A + B)(-A + B + C) + (A - B)(A + B - C) e 

When the case of large W is considered, Equation G-10 becomes : 

p(z) = I p ^(aVb) ' (G"X1) 

For the case of no drift field (f = 0), Equation G-10 reduces to: 

PW = + ̂  . (<M2, 
7 1 + 0 - (1 - 0) e ™ 

2. Reverse bias 

a) Finite length n-type region with no drift field For this case, 

the solution to the following equation is desired: 

Ôp__ d P-T-T-
-# - - Pn • (G-13) 
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With the "boundary conditions "being 

p (°' z ) =^ :  c'- e(i !  g (g-i4> 

(for which the quantities M and M will be defined such that the following 

is true): 

p(0, z) = Ip (M e"Z + N e Z )  , (G-15) 

^11 
—gg Ig at z - 0 , ( G-16 ) 

and 
^Ptt sl 

p^ - 0 at z - W . (G-17 ) 
P 

After taking the Laplace Transform, 

2 
- P(1 + s) = -Ip(M e~Z + N eZ), (G-18) 

dz 

~ dz =  atz = 0, ( G-19 )  

and 

dP 31 
P = 0 at z = W . (G-20) 

P 

The solution to this equation has the following form: 

P(s, z) = e2̂ 1 + S + Cg e Ẑ  + S + ̂  (M e"Z + N eZ) (G-21) 

From the boundary conditions (Equations G-19 and G-20) the values of and 

Cg may be found. When these are substituted into Equation G-21, the result 

is 

i 
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P+Ip(N-M)] [(/T+T - Î£)e(z~2W) Vrir̂  + (ÎE+ ̂i)e-z/5Ji")] 
P(s,z) = p 2 

SL SL OTT /=—-— 
s ,/l + s + i/l + s + (p-^ - /I + s) e S j 

P P 

L, 
+ — (M e~Z + H ez) . (G-22) 

In this section, the storage time is of interest. Hence, an equation of 

p(Tg, 0), which is relatively easy to solve for Tg, is desired. To do this, 

the inverse of the above equation will be made easier by employing the fol

lowing approximations : 

1 - e_2W vT17~i %1, ( G-23 ) 

and 

1 + e"2¥ V1 + S «1. (G-24) 

These approximations will not seriously limit the application of this ma

terial since Equations G-23 and. G-24 are true for most commercially avail

able diodes. 

Using these conditions, the inverse of Equation G-22 becomes 

I+lJïï-M) „ 
p(T,z) = g [e~ erfc (g/r ' e erfc (^Tt 

+ Ip (M e"Z + N e") . (G-25) 

The storage time may now be found by letting p(Tg, 0) = 0. Upon 

solving and substituting in the values of M and II, one obtains : 
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1 + SL /D + (1 - SL /D ) e"2W 
E_J2 P P 

1 + SL /D - (1 - SL /D ) e"2W 
erf/r" = %—E E—E (G-26) 

S 1 + Q 

b) Large ¥ with a drift field For this case, the following equation 

will be solved : 

It - " fLp ST - P • (G-27) 

With the boundary conditions being 

p(0, 2 )  - gÎL ez(A - B> , (G-28) 

p(T, °°) = 0 , (G-29) 

and 

" Iz + (fLp̂  P = 1% z = 0. (G-30) 

Taking the Laplace Transform: 

d2p « Z(A - B) 
2̂ " FTP DÂ - PD + :) = A + B  '  ( G - 3 1 )  

P(s, =°) = 0, (G-32) 

and 

- §5 + fL P = — at z = 0 . (G-33) 
dz p s 

The solution to this equation has the following form: 

= C, ='<* + • =2 .«A - + x, . («4) 
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The values of and CX may "be found "by making use of the boundary condi

tions (Equations G-32 and G-33). "When these are substituted into Equation 

G-34 the inverse may be found with the aid of part #825 in Reference 3. 

This results in 

-Bz 
p(T, z) = - g «fc - BVÎ) 

zB 
+ 2(l . B) erfc (^+ BVT) + Ae"1 erfc (^ + AVT)] 

z(A - B) 
+ h (B + A) (G-35) 

The equation to determine the storage time is determined by using the con

dition that p(Tg, 0) = 0. "When this is applied to Equation G-35 the fol

lowing is the result : 

,fL / f2 rfL -T / f2! 2 

rqrg = [-# + VI + (e s - l )+/l + —jE-

/ f2! 2 1 fL -T fL -, 
erf V(1 + —^-)Ts - e s erf /T J . (6-36) 
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