IOWA STATE UNIVERSITY

Digital Repository

) . . Towa State University Capstones, Theses and
Retrospective Theses and Dissertations y-ap ' .
Dissertations

1962

Reverse transient of a p-n junction

George Forrest Garlick
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd
b Part of the Electrical and Electronics Commons

Recommended Citation

Garlick, George Forrest, "Reverse transient of a p-n junction " (1962). Retrospective Theses and Dissertations. 2294.
https://lib.dr.iastate.edu/rtd /2294

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com



http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/2294?utm_source=lib.dr.iastate.edu%2Frtd%2F2294&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

This dissertation has been 63-2972
microfilmed exactly as received

GARLICK, George Forrest, 1936—
REVERSE TRANSIENT OF A P-N JUNCTION,

Iowa State University of Science and Technology

Ph.D., 1962
Engineering, electrical

University Microfilms, Inc., Ann Arbor, Michigan



REVERSE TRANSIENT OF A P-N JUNCTION

by

George Forrest Garlick

A Dissertation Submitted to the
Graduate Faculty in Partial Fulfillment of
The Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Mo jor Subject: Electrical Engineering

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

Head of Major Department

Signature was redacted for privacy.

Dean AF Graduate College

Towa State University
Of Science and Technology
Ames, Iowa

1962



II.

IIT.

VI.

VII.

VIII.

ii

TABLE OF CONTENTS

INTRODUCTION

A.
B.

Explanation of the Switching Transient
Definition of Terms and Symbols

FREVIOUS ANALYSIS OF THE SWITCHING TRANSIENT

SCOPE OF INVESTIGATION

A.
B.

A.
B.
C.
D.

Assumptions
Method of Analysis

- ANALYSTS AND CALCULATIONS

General Transport Theory

Error Function Approximation
Forward Bias

Reverse Transient Storage Time

1. Tollowing a steady state forward bias
2. TFollowing a finite forward bias time

Reverse Recovery

1. Diffusion current
2. Junction capacitance considerations

Potential Gradient in a Finite Length N-Type Region

1. Storage time considering no drift field
2. Storage time for a long n-type region

DISCUSSION

BIBLIOGRAPHY

ACKNOWLEDGEMENTS

APPENDIX

A.
B.
c.
D.

Error Function Approximation

Forward Bias

Storage Period Following Steady State Forward Bias
Storage Period Following Finite Forwaerd Bias Time

Page

13
13
16
20
25

25
30

41

42
45

S5
55

60
62
64
65
65
67

68
70



iii

Storage Period Following Finite Forward Bias Time
(Using an Approximation)
Reverse Recovery Phase (Diffusion Current)

1. Current during the recovery phase
Potential Gradient in a Finite Length N-Type Region

l. Forward bias
2. Reverse bias

a) TFinite length n-type region with no drift
field
b) Large W with a drift field

73
74

77
79
79
80

80
83



I. INTRODUCTION

In this complex age there is a demand for handling enormous amounts of
information in very short time periods. To meet this need, those in the
computer industry are constantly searching for techniques to increase the
already tremendous data processing speed of their product. Considering the
complexity of the overall computer, there are obviously many factors con-
tributing to its operating speed. However, one of the most basic factors
is that of the decision speed of the individual coﬁponents. It is with
this consideration that this thesis will be concerned.

Before the computer can make a decision, many individual diodes and
transistors must be switched from one electrical state to another. Since
no implemented device is a theoretical switch, there is an inherent delay
associated with each element. In this thesis, the switéhing delays will be
analyzed and an investigation made of how these delays vary as a function
of the specified parameters of the diode. These results may be used by the
circuit designer and the component engineer to predict switching delays for

a specified p-n junction.

A. Explanation of the Switching Transient

To analyze the switching transient, both the forward and reverse bias
conditions must be considered. The forward conductivity of the diode is
usually large enough and the forward junction voltage is usually small e-
nough that the forward current is determined by the external circuitry.
Under this consideration the delay associated with forward biasing of a di-

ode may be neglected. Even if these conditions are not met, the delay of



the junction current to reach its steady state value for forward bias is
negligible small compared to that of reverse bias. However, it is still
necessary to study the forward bias condition. This is because the condi-
tions‘at the end of the forward bias must be found and applied as the ini-
tial conditions for the reverse bias state.

An equivalent circuit of the switching process, together with applied
voltage and diode current waveshape, is shown in Figure 1. Before the time
T = 0, the diode may be considered either open circuited or in the steady
state reverse bias condition.

At time T = O a forward bias current pulse of IF is applied to the di-
ode. During this period, positive current carrier (holes) are passed
through the p-type material and injected into the n-type material at the
Jjunction. This results in an excess of holes in the n-type region, the
concentration of which is a meximum at the Junction and decays to zero far
away from the junction. The carrier concentrations during this forward
bias condition are shown in Figure 2.

At time T = T_, the forward bias is terminated and a reverse voltage

F,
V is applied to the circuit. For a finite period after the application of
the reverse bias, there remains a concentration of excess holes in the vi-
cinity of the Jjunction. These holes serve as current carriers which pre-
vents the junction volﬁage from reversing. This effect causes the diode to
behave as a short. Hence the value of the junction current is a constant;
equal to the applied reverse voltage divided by the external circuit re-
sistance. This period will be called the storage time of the reverse tran-

sient.
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After a time of (T), the carrier density at the junction falls to the
equilibrium value. The Jjunction voltage then reverses and begins to rise
toward the value of the applied reverse voltage. The time after the stor-
age period 1s defined as the recovery phase. The current during this por-
tion results from removing the remaining excess holes in the n-type region
and charging the depletion layer capacitance. A sketch of the junction

voltage and diode current is shown in Figure 3.

B. Definition of Terms and Symbols

In the calculations, it will be advantageous to define the value of
time as zero at the beginning of each phase. However, a distinction must
then be made between the various phases of operation. For this purpose the
period of forward bias will be denoted as Phase I, the storage time as Phase
IT and the recovery period as Phase III. Each quantity in this thesis with
a subscript of I, II, or III will mean that it is defined for its correspond-
ing phase with T = O being taken as the begimming of that phase.

To reduce the number of terms appearing in the equations, normalized
time and distance will be used throughout this analysis. The normalized
time (T) will be defined as the actual time (t) divided by the average life-
time of the holes in the n-type material. The normalized distance (z) will
be defined as the actual distance through the material (x) divided by the
average diffusion length (LP) of holes in the n-type material.

for ease of handling in the differential equations, the symbol (1)
will be defined as a dimensionless quantity proportional to current. Al-

though it will be called current, the value of (I) shown in this thesis
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must be multiplied by qD:P/LP to obtain the actual current density (amps/mz).

A complete list of defined terms and symbols may be found in Table 1.

Table 1. Definition of symbols

I= -~ gg - This is defined as a dimensionless quantity proportional to
current. (J_ = -gD Ox: I=JL /gD = -0p/dz
(3, qpap/ Pp/q]? dp/oz)

-~ Porward current flowing before applicetion of reverse bias.

IF

IR - Initial reverse current flowing through the diode after the
reverse bias is applied. This current is determined by the
external circuitry and flows during the constant current phase
of recovery. This current is defined as negative.

e - Ratio of the reverse current immediately after the application
of reverse bias (-Ig) to the forward current flowing immedi-
ately before the application of the reverse bias (IF)'

vy - Junction voltage of the diode.

V - Reverse bias voltage applied to the diode circuit.

T - Normalized time (t/TP).
T - Normalized storage time of the junction. Time from the appli-
s cation of the reverse bias until the Jjunction voltage goes
through zero negatively.

T - Average lifetime of the holes in the n-type region.

P
PP -~ Diffusion constant for holes in the n-type region.
u,IJ - Mobility of holes in the n-type region.
gp - Diffusion length of holes in the n-type region. (Lp = pp?p)
x - Distance through the one-dimensional semiconductor. (x =0
at the junction)
z - Normalized distance through the crystal. (a = x/Lp)
p(T,2z) - Hole density (in number of holes per cm?) as a function of the

normalized distance through the crystal and time.



Table 1. Definition of symbols (continued)

Total density of holes in the n-type region.

o]
1

Equilibrium hole density in the n-type region.

ol
t

Excess hole density in the region of consideration. (p =
1]

P, - pn)

el
1

S =~ Recombination velocity (cm/sec)




II. PREVIOUS ANALYSIS OF THE SWITCHING TRANSIENT

A major contribution to the understanding of the response of a p-n
Jjunction resulted from work conducted concurrently by R. H. Kingston and
by B. Lax and S. F. Neustadter (6, 8) at the Lincoln Labs in 1953-54. In
their articles, the storage time of a p-n junction was found to be related
to the values of forward and reverse current by the error function rels-
tion of erf /E; = 1/(1 + ). This analysis, however, was only conducted
for the simplest mathematical model with the following properties: 1. In-
finite length of n-type region; 2. No potential gradient in the n-type re-
gion; 3. Steady state forward bias.

In solving for the current during the recovery phase severe assump-
tions were made to obtaln a closed solution. Also this solution had a
singularity at the end of the storage phase and hence was only good for
large values of time beyond the storage period. To compensate for this, an
expression was obtained for the didde current if an infinite amount of re-
verse current was initially allowed to flow, i.e., TS = 0. The conclusion
was that the current during the recovery phase would always be less than
.predicted by the solution for this period and greater than the equation for
the diode current following a zero storage time period. The use of this
limiting case of TS = 0 was also employed by Shulman and McMahon (13).

The investigation of the reverse transient after a finite forward bias
time was conducted by W. H. Ko (7). However, after the equations were set
up to determine the storage time the following statemeﬁt was made: "Because
of the complexity of the initial condition as well as the implicit relation-

ship between the boundary conditions, it has not been found possible to
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obtain a simple exact solution for this problem". Hence, approximations
were made which limited the application of the results.

All of the previously mentioned treatments of the switching transients
have assumed constant minority carrier lifetime (Tp). To investigate this
assumption, methods have been derived to measure this quantity (9, 14).
However, the assumption of a constant value for the hole lifetime is not al-
ways true. The variation in minority carrier lifetime as a function of the

hole energy level has also been investigated, (l, 2 and 12).
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III. SCOPE OF INVESTIGATION

With the variations in physical dimensions of the diode material and
the variations in operating conditions, many diode applications do not fall
_within ‘the assumptions made for the existing treatments. By considering
these factors, it is the purpose of this thesis to serve as a general ref-

erence for predicting the reverse response of the p-n junction.

A. Assumptions

Some of the general assumptions made in the cited literature are the

following:

1. Steady state forward bias condition prior to the application of
the reverse bias pulse.

2. The width of the n-type material is much greater than the diffu-
sion length of minority carriers in that region.,

3. No field intensity away from the junction.

4. During the recovery phase, the current associated with the cre-
ation of the depletion layer capacitance can be neglected com~
pared to the diffusion current through the junction.

5. The lifetime of the holes in the n-type material is a constant
throughout the switching transient.

6. The conductivity, consequently the doping level, of the p-type
material is much greater than that of the n-type material.

In this analysis, a complete investigation will be conducted for the

condition when assumptions 1, 2, and 3 are not met. In other words, the

case will be considered when the forward bias pulse is applied for a finite
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period Ty, the width of the n-type region (Wh) is comparable to the diffu-
sion length of the minority carriers and when there exists a potential gra-
dient In the n-type region.

The validity of the assumption 4 will be investigated. Conclusions will
be drawn as to wﬁen this assumption may be employed and what compensations
must be made when the approximation is not warranted.

Assumptions 5 and 6 above will be used here as they have been in all
literature cited. Assurption 6 is invariably met in commercially available
diodes and does not limit the application of the results. A complete analy-

sis of the validity of assumption 5 is given by Shockley (12).

B. Method of Analysis

A general review of transport phenomens will first be conducted. IFrom
this consideration the diffusion equation, vhich governs the flow of posi-
tive carriers in the n~type region, will be obtained.

The solution of the diffusion equation yields terms which contain the
error integral or error function (as it is usually called). This function
appears several times in this thesls in the boundary conditions of subse-
quent differential equations. Due to the difficulty in handling the error
function in differential equations it became necessary to obtain an approx-
imation for it. By making. an exponential approximation, exact solutions
to the necessary differential equations may be obtained.

From the use of thevdiffusion equation, the error function approxima-
tion and the proper boundary conditions, the reverse response of the diode

will be determined.
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IV. ANALYSIS AND CALCULATIONS

A. General Transport Theory

The basic equation governing the flow of particles is the equation of
continuity. This equation, which results from the conservetion of matter,
may be stated as follows: The rate of increase of particles within a volume
is equal to the net inward flow across the surface of the volume. The con-
tinuity equation applied to the minority carrier holes in the n-type region

may be stated as follows:

time rate rate of ther- rate of re- divergence
of increase| = |mal generation| - |combination| - |of hole (1)
of holes of holes of holes flow

The method of the derivation presented here is similar to that of ref-
erences 10, 11 and 15. We will consider a small volume, in the n-type ma-
terial of dx dy 4z and centered at x, y, z. The rate of change of holes in

dx dy dz is

%% dx dy dz (2)

which becomes the term on the left hand side of Equation 1. The excess rate

of generation over recombination may be written as

(g - r) dx dy dz ; (3)

where g is the net rate of generation of holes per unit volume (due to ther-
mal excitation, ete,) and r is the net rate.of recombination with electrons.

This term represents the first two quantities on.the right hand side of Equa-

tion 1.
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The net flow of holes into the region may be obtained from the current
density. Since by definition the region extends in the x direction from

x - dx/2 to x + dx/2, the current density into the dy dz face of the volume

will be
oI < dx
Ipx(x’ NE) z) - —5%' (x: Vs z) 5 (4)
and that out of the other will be
oI x dx
IPX(X: M) z) + "% (x: Y, 2) 5 - (5)
The resulting hole flow into the region will then become
oI oI
1 X dx 1 x dx
= - = - = + —_—
q(IPX %xz)dydz ql(Ipx Ti—z)dydz
1 aIQx

Similarly the net hole flow into the dx dy and dy dz faces may be found,
which leads to the net flow into dx dy dz being

1 aIx oI BIZ 1 -

= + + ==V . .

q(%— -332;1 —g—z-)dxdydz 7 I, dx dy dz (7)
Equation 7 now becomes the last term on the right hand side of Equation 1.

Substituting these values into the continuity equation, one obtains

%%:(g_r)-%v-"z;. (8)

The following quantities will now be defined:

p, = equilibrium hole density in n-type region
p! = total hole density in the n-type region (9)
p = p! - p_ = excess holes density
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Also, the assumption will be made that the number of excess holes will de-

cay with the characteristic lifetime (‘I'p) vhich is independent of the con-
centration. The following may now be written:

- !

Pn P

— (20)
b

g-Tr=
The continuity equation now becomes:
(11)

where gI') represents the net rate of hole generation due to external effects
such as photons, etec. In this thesis, this term will be neglected.

If a semiconductor region is under the influence of an electric field,

the hole current is given by (1):

_I; = drift current + diffusion current
= E (p + - gD . 12
q (p p)-gq b Y (12)

Substituting this into Equation 11,

%Q-g—'-pPV°-E—.(p+pn)+DPV2p. (13)

For the investigation here, only current flow in the x direction will be

considered aﬁd thus Vp may be replaced by op . By using the following re-
ox

lationships
z = ’I—f- = —= (Defined),
DT
P D P
T = (Defined) , (14)

}dl-ild'
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and
aD
no= —L (Einstein's Relationship).
Pooxr®

g%-= op - f PP SE - p. Vhere f = aE (15)

i

This equation, which is commonly known as the diffusion équation, will be
used throughout this thesis to determine the concentration of excess holes

during the reverse transient.

B. Error Function Approximation

When a current is specified as a boundary eondition of the diffusion e~
quation, the solution will always contain error function ﬁerms. Since the
diffusion equation predicts the current flow during the entire switching
period, one might coneclude that the error function will be in evidence in
the results throughout this thesis. If no attempt is made to replace it
with a more easily handled expression, the results will appear in the form
of integrals or infinite series and will be.of limited practical use. With
this in mind, an approximation to the error function will be obtained. To
prevent this approximatién from seriously limiting the accuracy of the re-
sults, the procedure will be made avallable such that any degree of ac-
curacy desired may be obtained.'

A polynomial approximation for the error function is given by
Hildebrand (4). However, this series is very slow to converge for certain
valueé of the argument. The convergence may bé improved by defining a dif-

ferent polynomial for various ranges of the argument. However, when an
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entirely different series is used for exclusive range, it becomes awkward
to apply to a general analysis where the argument may take on all values.

A more convenient form for the approximation is the exponential. This
is because the exponential, or a series of them, is easily ahndled in the
differential equations encountered in this analysis. This form is also sug-
gested by the fact that (1 - e¥) is a rough approximation commonly used
for the error function of x. The procedure to obtain an approximation of

the following form will now be considered:
a.x
erf x = C.et foro<x. (16)
i=1 * B

Intuitively one can reason that all the a's will be negative or zero
and the C's finite. However, if this is to be a general representation
negative values of x must be considered. Since the a's are negative, the
sequence shown in Equation 16 will not be bounded for negative x.

For-the consideration in this problem, the defining equation_for the

error function and the error function identities shown below will be used.

x
. - _ 2 y '
Error function of x = erf x = a3 f e dy . (17)
0
Complementary error function of x = erfe x = 1 -~ erf x. (18)
erf (~x) = -~ erf x . ) (19)
erfc (-x) =1+ erf x . (20)

These equetions are illustrated in Figure 4. It now may be seen that the
difficulty with the negative values of the argument may be overcome in one

of the following weys.
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1. In solving for the C's and a's in Equation 16 use values of
erf (x) for both positive and negative values of x. In other
words, match the curve from large negative values to large
positive of x.

2. Using the above identities, rewrite Eguation 16 to take into

account the sign change as follows:

a, |xi

N
erf x = § = ¢ et . (21)

i=1 HW O H
3. Carry out the calculations assuming the argument is positive.
Then, with the use of the above identities, note thg sign
changes in the results that would occur if the argument were

negative.

In consideration of the above possible approaches one can conclude that
the first would lead to matching the approximation to the error function at
a great number of points. This would lead to such an enormity of calcula-
tions that it must be ruled out.

Although the sequence shown in number 2 will have the proper sign
change to represent the error function for all values of the argument, it
would be very awkward to handle in differential equations. If this rep-
resentative were used, it would be necessary to state whether the argument
were positive or negative before the differentiation could be performed.
Because of this, the second approach hés no advantage over the third.

In this thesis, the third approach will be used. The exponential ap-

proximation will be calculated for positive arguments of the error function.
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When this approximation is used in the differential equation, the solutions
will be obtained assuming the argument is positive. Once the results have
been found the sign changes will be noted for the case when the argument of
the error function is negative. The exponential approximation may then be

written as:

a.Xx
erf x = cC,et foro<x, (16)

and

erf x for 0> x . (22)

n

s

Q

[

D
!
1S
»

In obtaining this approximation, both the C!'s and ats in Equation 16
will be assumed to be undetermined. One approach in finding these values
is to minimize the square of the difference between the approximation and
the error function as the value of each C and a is varied. By using con-
puter techniques, these calculations may be carried out until the approxima-
tion is within the desired accuracy of the error function over the speci-
fied range. Because of the non-repeatability of the solution and the ex-
tensive calculation which must be undertaken to improve the accuracy of the
approximation, this approach will not be used here.

Instead, a sequence of N exponentials will be set equal to the error
function at 2N equally spaced points. Two I points are needed since each
exponential has two unknowns; the coefficient of the term (C) and the co-
efficient of the power (a). This procedure leads to exact solutions for
the C!'s and a's with the approximation being equal to the error function at

the selected points. This procedure, however, has the shortcoming that the
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a's may teke on all values (real or imaginary, positive or negative). But,
for application in this analysis it is necessary for each a to be negative
and real. Hence for use here, the value of the a!s which are nearest to
the value dictated by the equations and yet are'real and negative will be
selected.

The accuracy of the approximation may then be checked for all values
of the argument. If the accuracy calculated is not great enough, more terms
may be added to the approximation with two equating points added for each
new term. This procedure yields itself quite easily to increasing the ac-
curacy to any desired value by increasing the number of terms in the ap-
proximation. This is especially true if a computer is available with sub-
routines for sulution to N equations with N unknowns.

A complete outline of this procedure is shown in Appendix A. In this
appendix a 4 term exponential series is calculated as an approximation to

the error function. This approximation is tabulated in Table 2 and plotted

in Figure 4.
C. Torward Bias

At the beginning of the forward bias period, a step of current ;F is
forced through the diode in the forward direction. This assumption does
not limit the application of this material for most industrial use. The
reason being that the equivalent external resistance (RF in Figure 1) is
generally much greater than the forward bias resistance of the diode.

With this assumption, positive carriers will be injected into the n-

type material at a constant rate. The motion of these carriers is governed



Table 2. ELrror function approximation

1+ 3.9262¢72 18%5% | 10, 8087671 372% 1 5 ggose ™1 MK & orp «
X Approximation erf x Difference
0.0 -.02210 . 00000 -.0221.0
0.1 10435 11246 -.008LL
0.2 22303 .22270 +.00033
0.3 . 33275 . 32863 +.00412
0.4 43290 42839 +.00451
0.5 «52333 .52050 +.00283
0.6 80420 .60386 +.00034
0.7 .87587 .87780 -.001983
0.8 . 73887 . 74210 -.00323
0.9 . 7938L . 79691 -.003L0
1.0 .84136 .84270 -, 00134
1.1 .8821.7 .88021 +.00196
1.2 .91693 .91031 +.00662
1.3 94627 93401 +,01226
l.4 .97082 .95229 +.01853
1.5 .99113 .9661L +,02502
1.6 1.00775 97635 +,03140
1.7 l.02114 .98379 +.03735
1.8 1.03178 .98909 +.04267
1.9 1.04000 .99279 +,04721
2.0 1.04619 .99532 +.05087
2.1 1.05067 .99702 +.05365
2.2 1.05370 .99814 +.05556
2.3 1.05552 .99886 +.05666
2.4 1.05625 .9930 +.05725
3.0 1.04862 .99998 +.04864
5.0 1.01102 .99999 +.,01103

by the diffusion equation vhich was derived previously as Equation 15. Most
treatments of the solution of this equation consider only the steady state
forward bias case, which permits letting dp/dT = 0., In this treatment the
time dependent solution will be found and the time of forward bias will be
specified as T_,. Considerations will then be made for the case of large TF

P
(steady state) and also for small Tp (transient Porward bias condition).



22

For this forward bias case, the hole density satisfies the following

equation subject to the shown boundary conditions:

3, %

3_£= ~5" - P (23)
oz

pI(O, z) =0 (24)

apI

- 5 = I, (25)

z=20
and
pp (T, ®) = o. (26)

Equation 23 1s the diffusion equation with the modification that £ = O.

This term is dropped here since presently the case of no field intensity away
from the junction is being considered. The case of a built in field will be
considered later.

The first boundary condition (Equation 24) states that at the time of
application of the forward bias, there are no excess minority carriers in
the n-type region. The second (Equation 25) defines the externally de-
termined forward current. The last boundary condition states that the width
of the n-type material is great enough that the excess hole concentration is
zero at the n-type ohmic contact.

To aid in solving the above equation, Laplace Transforms will be used.
The time dependance of the equation will be transformed and the differential
equation in z solved. This solution will be a function of z and s (the
transformed variable). The solution to the original problem then may be ob-

tained by performing the Inverse Laplace Transform.
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The calculation for the solution to the forward bias period is carried

out in Appendix B. The following equation is the result:

pI(T, z) = ;E [e—z erfe (2— - VT) -e” erfe (2— + J?E)] . (27)
2vVT 2T

In accordance with the prescribed subscripts, this will be denoted as Phase
I. The values of T will be the normalized time of forward bias with T = O
being the time of application of the forward bias.

From Equation 27, a plot can be made of the dimensionless quantity p/IF
as & function of z. This plot is shown in Figure 5 with the values for the
time of forward bias being 0.0, 0.05, 0.1, 0.2, 0.5, 1.0, 2.0, 5.0, and in-
Tinity. From this plot it may be seen that the slope of the hole concentra-
tion is a constant at the junction for all values of time. This, of course,
is due to the diode current during this period being a constant.

For large values of T (greatei than 3), the hole concentration shape
assumes a decaying exponential. This also may be seen by letting the value
of T approach infinity in Equation 27. This would correspond to the steady
state forwvard bias condition. From the error function identities showm prev-

iously, the following is the result.
-z
p(z) = I; e . (28)

The correspondence between this eguation and that given by other authors
msy be seen by noting that our I, (defined in Table 1) is Lp/qDP times the

actual current density. Since this current density is given by Middlebrook

(10) as
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T represents the normnlized time of
forwvard bias

L 1
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Figure S.

Fzcess hole density during forward bias
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qv
aP o
I =2 p (& -1y . (29)
P L n
e
Fguation 28 may be written in the more familiar form of
av
5B
k
p=p (¢ -1)e Ip . (30)

D. Reverse Transient Storage Time

As mentioned in the preceding section, excess holes are injected into
the n-type region during forward bias. When the reverse bias is applied,
these holes remain in the vicinity of the junction and serve as current car-
riers in the reverse direction. For a finite period of time, the diode be-
haves as a short and the junction is not able to develop a reverse voltage
across it. |

Since the junction voltage will be positive and small in magnitude,
the current will be a constant determined by the applied reverse voltage
- and the external circuit resistance. Hence, this period is sometimes re-
ferred to as the constant current phaée of reverse recovery. Here, however,
this period will be denoted as the storage time since the actual phenomena
is one of removing stored charges.

At the time the concentration of excess holes at.the Junction becomes
zero, the junction voltage becomes negative and begins to rise toward the
value of the reverse applied voltage. This terminates the storage phase

and the magnitude of current begins to decrease.

1. Following a steady state forward bias

Shown below is the diffusion equation with the applicable boundary con-

ditions:
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%py; - oy

T T 52 P (s1)

pr(0; 2) = Te™® (32)

P _ . .

-~ = I (I; is negative) , (33)

z=0
and
ppp (T, =)= 0. (34)

The first condition (Equation 32) is the carrier concentration after a
steady state forward bias; the second condition (Equation 33) imposes an
externally determined current I, and the last condition (Equation 34) is the
specifiication of long n-type material.

This equation may be solved in much the same manner as for the :t‘orwé.rd
bias case. The complete solution is shown in Appendix C with the following

as the result:

PII(T’. z) = -]—:R;;—% [e-z erfc (2—Zﬁ - VT) -e” erfe (2sz + ,/T]j')]
tI e . (35)

This equation represents the excess hole concentration as a function of
distance through the crystal (z) and time (T) of Phase II. The time T = 0O
is teken as the time of application of the reverse bias.

To determine the storage time the boundary condition that p(’I's, 0)=0

will be used. Using this condition, Equaetion 35 reduces to

o=-IT—‘-—;-I1 [erfc (.—/T—S)-erfc(ﬁs)] + I (36)
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In accordance with the error function identities shown earlier, the above

may be written as
o=(1R-1F)erf\/Ts+1F, (37)

which become

I
Tk

Using the definition of the symbols this may be written as

/ ts 1
exf 7= (39)
b

erffT_s = (38)

L+ 0
vhere © is the magnitude of IR/;F'

As might be expected, the length of the storage time is related to the
amount of stored charge at the end of the forward bias by the IF term, the
rate of removal of this charge by (IR) and the average lifetime of these
charged carriers (?p). This relationship is plotted in Figure 6 and tabu~
lated in Table 3.

Obtaining the storage time is not the only consideration during this
period. Since the diode cannot be considered in a steady state reverse
bias uﬁtil all of the excess minority carriers are removed, the remaining
stored charge also must be considered.

Due to the constant current feature of this phase, the slope of the
hole concentration at the junction will be a constant and determined by IR.
If the reverse current is very large, this slope will be great and the con-
centration will rapidly go to zero at the junction. However, in this case

the carriers out in the n-type material will not have had time to diffuse
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Table 3. Storage time tabulation
1

Reference equation: erf \/_'Fs = T_-—I-R7—I;

“éi” % ";E” ° T i e Vﬁf; Ts
200.0 .005 .9950 1.998 3.95
100.0 .01 9901 1.827 3.34

50.0 .02 .9804 1.65 2.72
40.0 .025 .9756 1.592 2.54
25.0 .04 .9615 1.463 2.14
10.0 .10 .9091 1.196 1.43
5.357 .187 .8427 1.0 1.0
5.0 .20 .8333 .978 .966
4.0 .25 .8000 .908 .824
3.0 .33 . 7500 .813 .661
2.5 .40 7143 .755 .570
2.0 .50 .6666 .684 .468
1.5 .66 .6000 .595 .354
1.0 1.0 .5000 477 .228
.66 1.5 4000 .3708 .1378
.5 2.0 .3333 .305 .093
A 2.5 .2857 .259 L0672
.33 3.0 .2500 .225 .0508
.25 4.0 .2000 .1792 .03215
.20 5.0 .1667 .149 .0222
.10 10.0 .0909 .0807 .00651
.0L  100.0 ~.0099 .009 .000081

out and a large percentage of the charge will remain at the end of the
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storage time.

If the reverse current is limited to a small value, the hole concen-
tration slope at the junction will be small and q9nsequently the storage
time long. However, only a small portion of the stored charge remains at
the end of the storage period.

This discussion is illustrated in Figures7 and 8. Figure 7 shows the
variation of hole concentration during the storage period. This plot is
made for a storage time of Ts = 0.2 which corresponds to a value of © =
1.115. The points are obtained by using the value of -IR/IE = 1.115 in E-
quation 35 and calculating p(z) for T = 0, 0.05, 0.10 and 0.20.

Figure 8 indicates the amount of holes remaining in the n-type material
after a storage time of 0.0, 0.05, 0.10, 0.20 and 1.0. The points were e=

valuated by using the corresponding values of 6 in Equation 35 and calcu-

lating p(z).

2. Following a finite forward bias time

In the section on Forward Bias, an expression for the excess hole con-
centration was derived. If the forward bias pulse is applied for a finite
time of TF’ the carrier concentration may be found by lettiné T= TF in BE-

quation 27. Upon this substitution, the following is obtained:

¥

(T 2) = 5 [e7® exfe (2= - V)

2 VT,
- % erfe (—2—+ VL)) . (40)
e” erfe (2 Jﬁ; .

If the forward bias 1s terminated at time ?F end a reverse bias is ap=-

plied, Equation 40 will become the initial concentration for the storage
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T represents the time of reverse bias

i 1 1 1 1 1 - 1 Il

Figure 7.
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Minority carrier concentration during storage time
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Figure 8., Remaining stored charge at the end or the storage period
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phase. This may be represented as pI(TF, z) = pII(O, Z).
To analyze the storage phase under this condition, Lguation 31 will be
solved with the boundary conditions being Equation 33, Equation 34 and the

following equation:

(0, z) = ;E‘ [e-z erfe (= - JE%)

Py 2 VT,
- e° erfc Z JE- .
e - s +VT)] (41)

These equations are the same as for the steady state forward bias case ex-
cept for initial minority carrier concentration (Equation 41). This one
difference, however, make the equation much more difficult to handle. Be-
cause of this, the exponential approximetion will be used to replace the er-
ror functions appearing in the boundary conditions.

Whenever the approximation is employed, the general series will be used
in the analysis. Once the results are obtained, the terms of the approxi-
mating series will be substituted in from Appendix A. IEquation 41 then be-
comes

. (-)a; (G - V)
;F -z i ZT?EF‘ F
[ (1 - i (<) ¢, e ¥ )

(O: z) =‘2"'

?
- =1

(=L + (T
el st JEETE

i=1

| . (42)

Where the sign in ( ) are to be used iffT% >z/2 fﬁ%. To simplify this and

other expressions in this thesis, the following will be defined
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a.x
-E C,e™ =erfcx=1-erfx, withC =-Landa =0. (43)
—0o 1 o) o

Hence, Equation 42 may be written as

Z
N 2 (5= + VTp)
pII(O,Z)=-2i[eZ L G F
(<)o, (5 - /T)
0§ 2 /5 F
+ e (1 - ;1 (-)c, e B ). (a8)

The solution to Equation 31, with boundary conditions Equations 44 and

34, may now be obtained. This complete solution is carried out in Appendix

D with the following result: (-)a
L [ (1o, v, [z - -2l
p(T,2) = - -2—-{}___ (-)eee P T e F
i=0 2
(-)a, (=)a
'Z(ﬂ%; -1 -a, Az - D)
[e F erfe (Z— - (—=-1)VT) - ¢ F
2VJT 2 T
I a; VTp
(erfe [m"‘ ('2TT=- - l)ﬁ] -2)] - Z (-)Cl e
a,
(er+ 1% -0 1 -alzm +1)
o F e U erfe (~2— - (——+ 1) yT)
2 VT 2JTF
a.
Z(Eﬁ—'l‘ l)
-e F (erfe [ ==+ (——+ 1) /T -2)]} --2]-:5 [e-z
=N 2 \/TF
erfe (2= - VT) - e® erfe (2= +yT)] . (45)

2VT 2T
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vhere the sign in ( ) is to be used for i > 1 if VT > s—rm .
F~ 2V,

Also in Appendix D, it was shown that when the value of TF was permitted
to approach infinity, Equation 45 reduced to Equation 35 of the steady state
forward bias case.

Due to the exponentisl terms appearing one might be concerned about the
behavior of this function as T+, Upon consideration of this equation, it

may be seen that the boundness of the function is threatened whenfT% <

2 .« Since then
E:VT%

a
i 2 .
(W-T-F- -1)* -1 >0 withall a's <0, (46)

We will then be concermed about terms of the following form:

2 .
BT - LT bz e (gz-i,-a- bVT) - e P erfe (%- vT)),  (47)

vhere |b| > 1. To analyze this expression for large values of T, the fol-

lowing asymoptic expressions for the complementary error function term will

be used:
e-b2‘1‘
erfc by T~ for b > 0O, (48)
b VT
and
e-sz
erfc (-bVT) =2 - for b > O. (49)
b V«T

These were derived by finding a function whose ratio to the complementary
error function approached unity for large values of the argument.

It now may be seen that for a finite z and very large values of T,
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Equation 47 becomes

e(b2 - 1)T (ebz o bT bz =D T)
+ . (50)

Which becomes

- S > 0as T—ro, (51)

e
b V/xT b VT

and hence the equation is well behaved.

The storage time may be found by letting pII(TS, 0) = 0. Equation 45

then reduces to N . [(E:;;; F o
(T, 0) = 0= - ;E [ > o Yoy Vip TRV s

-)a o /T Ke—a:/i—T_—+ 1% - 1] T
(ext (aﬁi-l)m‘s H)-iocielFe F
(ert (2 7T +1)J— + 1)) + I, erf VT ; (52)

where the signs in ( ) are to be used for i > 1 ﬁh—l?‘ >z/2 ‘/T-F—‘

It may be readily shown that if TF-’°° the value of TS is determined
by the error function relationship of Equation 38, and if TF*O the value
of ‘I's is also zero. These, of course, are the proper end points for ‘I‘S.

Equation 52 then may be used to calculate the storage time after a
fon pulse of duration T_. This may be done by substituting in the

F

values of TT’ ]'_R and TF. The values of the a's, C's and N are determined

from Appendix A. The value of TS may then be calculated by trial and error
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using computer techniques.
Although this procedure will give the proper value of TS for a given
TF and ©, it would be beneficial to have a more easily handled expression.

For this purpose, the following equation will be used to represent Equation

40:
B(Tps 2) == m ™%, (53)

To illustrate that this is a reasonable choice, Equation 40 is plotted
on a natural logarithm scale in Figure 9. Also on this plot is shown the
approximation.

The values of m and r for a given TF are shown in Table 4. Although
these parameters were only calculated for eight discrete values of TF’ this
procedure could be used to obtain an approximation for any value of TF'

Using this approximation, the diffusion equation may be solved with

boundary conditions of Equations 53, 33, and 34. This solution is carried

out in Appendix E with the result being

pII(T’ z) = 2&1[ erfc(-—\ﬁ,- VT) - e erfe (—f=-+\/—)]
+;F l-r)T[rz erfc (-QZ—T-+I'\/T)

T2 erfe (ﬁﬁ- rvT) - 2)] . (54)

To show that this function is well behaved for r > 1 and T-—+»», the
asymontic expressions of Equation 48 and Equation 49 were again used. Vhen

this is done the terms of concern in Equation 54 become
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—— Ixponential approximation

= (T, =)

0 .1 .2 .3 .4 5 .6 .7 .8 .9 1.0
Normalized distance (z)

Figure 9. [xponential approximation for p(Tf)
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Table 4. Exponential approximation for p( T z)

Where %; =m e-rz is an approximation for the following
P 1L [e7? erfe (= -VT)-e” erfe (=2 + /T)]
L 2 2/T ovT
Approximate
T m ) r Maximum Erroxr
0<z<1.0
0.0 0.0 ® 00.0%
0.1 0.35 4.0 16.0%
0.2 0.47 2.75 10.0%
0.5 0.69 1.84 8.4%
1.0 0.85 1.35 4.5%
2.0 0.96 1.10 2.5%
5.0 1.0 1.0 0.5%
o 1.0 1.0 0.0%
IF e-rz e-T erz e-T
—m ( + ) *0 as T *o, (55)

r JaT r JoT

To determine the storage time, the boundary condition that p(TS, 0) =

0 will be used. Imposing this condition, Equation 48 reduces to
-(1 - r2)T
IRerffT_s=-mIFe S(erfcr\/?s). (56)

The effect of the time of forward bias upon storage time is shown in the
plot of © versus TS in Figure 10. The fixed parameter here being @F. This
plot was constructed by selecting a value of TF and then finding the value
of r and m from Table 4. The points then were calculated by picking a

value of TS and calculating ©.
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3 ‘I‘f represents the normalized time of forward bias
5.0
o
1.0
.5
P R
-
.05 [} ") ] 1 [ I} i1 1 1 1 Il 1

.02 .05 .1 .2 .5
Normalized storage time (T_)
FPigure 10. Storage time following a finite forward bilas period



E. Reverse Recovery

At the end of the storage period,Athe concentration of excess minority
carriers at the junction has deminished to zero. However, as shown in the
previous section there remains a quantity of these carriers in the n-type
region. Before the diode will reach a steady state reverse bias, this con-
centration must be reduced to zero throughout the entire n-type region.

The junction current does not change instantaneously from the value
during the storage phase to the reverse saturation current. Instead, it
decays gradually in a recovery tail. This current is made up of essentially
two components. First there is the diffusion current associéted with the
removal of the excess hole concentration mentioned above. Second, there is
a current associated with the charging of the depletion layer capacitance.
The capacitance current arises from the fact that at the beginning of this
phase the junction voltage is zero whereas at the end of the phase the junc-
tion voltage is the magnitude of reverse voltage in the circuit. The change
in voltage across the junction capacitance, which is itself a function of
the voltage, results in capacitance current.

Usually, the capacitance current is neglected and only the diffusion
current considered. In this analysis, however, both of these current
components will be considered on a superposition basis. In other words the
diffusion component of current will first be calculated and then the cor-
responding magnitude of capacitance current will be investigated. If the
capacitance current is comparable to the diffusion current, it may be added

to obtain the total junction current.
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1. Diffusion current

The diffusion current associated with the removal of the remaining

stored charge will be found for the following case:

2
Prr _ Oprrp

3T - 5,2 " P (57)
With the boundary conditions being
p.(0, z2) = EE—:~EE [e-z erfe (s—m— - (T.)
IIT ™ 2 2 VTS s
z Z -z
- e erfc (m + ‘/TS)] + IF e , (58)
PIII(OO’ z) =0, (59)
and
PIII(T) oo) = 0. (60)

Equation 57 is the diffusion equation for the case of no potential
gradient in the n-type material.

From the firsf boundary condition one sees that here the analysis is
being carried out for a reverse bias following a steady state forward bias.
Hence this initial hole density was found by letting T = TS in Equation 35.

The second boundary condition, Equation 59, needs an explanation since
it is to some extent an approximation. By definition the quantity p(T,_h)
is the difference between the actual hole concentration and that of the in-
trinsic hole concgntration (pn). Since at steady state reverse bias the
hole density at the junction (z = 0) is zero, the vélue of PIII(w’ 0) should

be -P,. Also the slope of PIII at the junction should be related to the
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reverse saturation current (IS). ‘

As shown from the boundary conditions, however, the concentration of
holes has been assumed to reduce to the equilibrium value P, and remains
at this value for all z. This assumption has the effect of neglecting IS
since here the magnitude of current will reduce to zero rather than Is. I
it were desired to consider this saturation current, the magnitude of cur-
rent below IS could be set equal to Is with very small error in the current
waveshape.

For the solution to the Equations 57 through 60, the Laplace Transform
and the exponential approximation to the error function was again used.

This complete solution is carried out in Appendix F with the following re-

sults: [((-)ai )2 ;
- I (+)o, @ Uzgr -1 - LT
prry(T2) = IRQIF [ ié-)c e ™ ¢ ®
(-)ai (-)za.:.L
-2z - ) (-)a, 2z - )
(e erfe [Q_f’f (TITE; - 1) JTl+ e S
s

a.
a /T [(27%- + 1)2 -1l
i' s 5

(-)a, N
(exrfe [§%+ (WT—:_SL -1) J_T_] -2)) - iZ:__O Ce e

a, a,
-z(-g%;+ 1) z(év%s--!- 1)

(e erfc[az-,f-(%;+l)J—T—]+e

(erfe [-EVZT"‘ (E;%-—+ 1) yTl- 2))] - —2]-?- [e-z
s

+ e erfc G+M] + 5 e (61)

. > Z - >
vhere the signs in () are to be used when f'i‘; ETT—S- and i > 1.
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Upon examination of this equation one sees that there exist exponential
terms which at times have positive exponent containing the variable T or z.
To show that the above equation is well behaved for all values of T and 2
each set of terms were checked for boundness in Appendix F.

Although the holes density is of interest, the magnitude of reverse
current flowing during this phase is of greater interest. This may be ob-

tained by performing the following:

- %
- IIT
I(T) = - - . (82)
z=20
This calculation is carried out in Appendix F. It is of interest to compare
the case of Ts = 0 with that derived by others. For this condition,-/Ts <
z/é.fT; and Equation F-15 reduces to
- -

(1) = - I, [ext /T + siﬁf- 1l , (63)

Irrr
vhich agrees with that derived in two cited papers (6, 13) and with a simi-
lar expression, which includes Is, derived by B. Lax and S. F. Neustadter
(8).

For the general case of Ts greater than zero, the current during Phase

ITII is given by

a,
[(=p + 1)% - 11T
al T o]t
Ipr(T) = (I3-Tp) {Ezf%: -Cje * S e ®

a i=1_
~( 1. 1)2T
[e §7T; 2y & ] et
/;T_ + (§7T=s—- + l)(erf (§7T—s' + l) /Tf) + IR_IF(VI?T- + erfﬁ).

(64)
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For assurance of the validity of this equation, the end points may be
checked. For T = 0, it may be shown that IIII(O) = IL; and for T = =,
IIII = 0. These are the proper boundary conditions.

For a steady state forward bias, the entire current waveshape has now
been determined. Hence, for a given value of IF and IR, the storage time

may be determined by Equation 38 and the current waveshape during the re-

covery phase by Equation 64. These equations are illustrated in Figure 11.

2. Junction capacitance considerations

Since the current considered here is in the same direction as the dif-
fusion current, one can, in effect consider a capacitance placed in paral-
lel with the diode. This consideration is illustrated in Figure 1l2a. When

such a model is used, the following equations may be written for the cir-

cuit:
V=(IC+IJ)R+VJ, (65)
and
va .
I.=C=——+ v_4ac
C dat & (66)

Where V is the externally applied reverse voltage present in the circuit,
IJ is the junction current dge to diffusion and IC is the current due to
the creation of the space charge layer. To investigate the validity of
neglecting IC’ its maximum value will be found and compared to the total
diode current. The maxiﬁum capacitance current will occur when C and
va/dt are a maximm. These in turn will occur vhen v = O.

FPor these calculations the equation for Vs derived by several authors
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will be used (4, 6). This equation is

vJ=k—§— 1m(1+IF IF Ierf‘T‘). (67)
Vhich gives
Wy x1° (I - ) 2e™ (e8)

dt

e TP&‘T(IS+1F+(IR-IF)erf/E)

But vJ

capacitance current to total current is glven by

¢ xr° (Iy- IF)EQS

= . (69)

?pIs d IR VRS Ts

= QO vhen T = Ts; and with the aid of Eguation 38 the ratio of meximm

w7

'To iliustrate the validity of neglecting IC’ Equation 69 has been plotted
in Figure 12b. For this plot the three parameters of the diode (i.e., c, Is
and gp) were lumped together as the fixed parameter of the plot.

From this figure one can see that if Ciz'Isjp; the capacitance cgrrent
nay be neglected with little error. This specification 15 true for most
computer and switching diodes on the market today. However, due to recent
methods of decreasing the minority carrier lifetime (gp) éome of the faster
diodes have a capécitance current which is a greater portion of the reverse
current. To cite an example; the HD 2967, which is advertised by Hughes
Semiconductor as an ultra fast switching diode, has capacitance of 4 ppf, I
of 40 x 1078 amps and a TP of 26.4 x 1072 sec (5). With these values C is

approximately 4Is?p. Hence for a 6 of 1 the ratio of IC/IR would be approx-

imately 0.4.
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F. Potential Gredient in a Finite Length N-Type Region

As derived previously in this thesis, the following equation governs

the distribution of holes in the n-type semiconductor material:

ap=§ig_ ap- i —ﬂ
37 622 £ LP Sz~ P with £ = - . (70)

'In this equation En represents the potential gradient to which the holes
are subjected.

In the previous analysis £ was taken to be zero since no field was con-
sidered away from the junction. Furthermore, the n-type region will be con-
sidered to have an ohmic contact with an arbitrary surface recombination
velocity (S) at a distance W from the junction. The mathematical model under
consideration in this section is shown in Figure 13a.

For the steady state forward bias condition, op/dT = 0 in Equation

70 and the boundary conditions become:

dp = - =

iz fL p= ;F at z2=0 (71)
and

dp D2 = =

37 + (D ~fL )p=0atz=W. (72)

Equation 71 specifies the forward current (IF) and Equation 72 stetes that
the diffusion current plus the drift current must equal the recombination

current at the ohmic contact.

The complete solution to this set of equation is showm in Appeﬁdix G

with the result being:
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Figure 15. Diode with a drift field
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. I, £
£L, £ SL 0752 -Vi+ —E- )z
(R -Vi+ —2 -5R)e
p(z) = - I, 2
S S
( 5 F/1+ —% W1+ -3+ Qp )

fL, [ 1% %
__——_55—5 (—52)2 +V 1+ ——ZR— (z - 2wW)

S fL V/ f
+ (=2 - —53 -/ 1+ ——ZEL-) e

D
. (73)
. V/ £71, ©
£1, £°L © fL /s SL -2Wy 1 + 'ng'
+(-§£‘+ l+—4‘?—)('—22+ l+—ZR—-'I')—P-)e
P

For purposes of comparison to that derived previously, the long n-type
region will be considered. When W is allowed to become very large, Equa-

tion 73 reduces to

L, £
(—52 -y1i+ ——ZE—) pA

o(z) = I, ° =7 . . (74)
/§+ -—ZFL-+ —EE

The dimensionless quantity p(z)/;F is plotted in Figure 13b for pr = +1.0,
0.0, and ~1.0. From this figure, it may be seen that for the negative
drift field has a larger hole concentration é% the junction but a faster
decay rate. This is because the negative field tends to force the holes
back toward the junction, whereas, the positive field aids the hole flow

for forward bias.

For the finite length n-type region, all factors in Equation 73 must
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be considered. This case is plotted in Figure 14 for SFP/PP =1, 10, and
100 with fpp = +1.0, 0.0, and -1.0. For this plot the value of W was
taken as 1.0. Hence, the actual length of the n-type region is equal to
the diffusion length of holes. From this plot one sees that the ohmic
surface recombination velocity (S) has its greatest influence when the drift
field is negative. This is because there will be a larger concentration
near the ohmic contact to be influenced by this parameter.

For the reverse bias phase the storage time will be calculated for
two cases. First, the storage time will be found for no drift field in a
finite length n-type region. Second, a long n-type region with a specified

drift field will be considered.

1. Storage time considering no drift field

To obtain an usable solution for TS, the velue of W will be specified
as greater than or equal to 0.5, The storage time calculations are carried
‘out in Appendix G with the following result:

~2W
1+8L/D +(1L-S8L/D)e
P/ D ( P/ P)
-2W

1+ SLP/DP - (1 - SLP/DP) e (75)

erf TS =
1+ 90

Specifying Spp/qp = 10, this equation is plotted in Figure 15 for W = 0.5,
1.0, 2.0 and infinity. One interesting thing seen here is that for a speci-
fied value of W there is a limiting value of Ts. This results from the fact
that the recombination at the contact would reduce the hole concentration

at the junction; even if the diode were open circuited.
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Plot made for W= 1,0
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Figure l4. Finite length n-type region with a drift field
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Plot made for CL_/D = 10
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Figure 135.
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2. Storage time for a long n-type region

For a long n-type region with a drift field, the storage time is cal-

culated in Appendix G and given by:

. s,/ £, 2 (fn -m e
= (= + J_+——4:P—-)[——P-(es-1)+ 1+ —2

1+ ( 2 2

£, 2 FI, =T £
erf (l+—-4-P—-)'I'S-—§P-e serf-—ep-,/'l‘s]. (78)

-

From this équation a plot of © versus Ts is shown in Figure 16. This figure
shows that the storage time for the negative field is greater than for the
no-field or negative field condition. This difference, however, is not as
great as one might expect. This is due to the fact that even though there
is a larger concentration of holes at the junction for the negative field
case, this field aids in the removal of these holes. The opposite is true
for the positive field case.

‘Although the storage time is greater for the negative field, only a
small hole.concentration will remain in the n-type region at the end of
the storage period. For the positive field, Ts 1s less but a large portion
of the hole concentration remains. Hence, the magnitude of current at the
end of the storage phase will rapidly decrease for the negative field but

slowly reduce for the positive field case.
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Figure 16. Storage time versus 0 for a drift field in the
n-type region
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V. DISCUSSION

The first mathemstical model considered in this thesis was a diode with
a long n-type region and no drift field. The minority carrier density and
diffusion current were found for the entire switching transient. During
forward bias the current is equal to IF and the hole density is given by
Equation 27. For the storage time the current is indicated by IR and the
carrier density by Equation 35. And finally for the recovery phase, the
current is given by Equation 63 and the hole density by Equation 61. With
this material available, the circuit designer can predict the time (after
reverse bias) for a diode to reduce the magnitude of reverse current to a’
specified amount.

The storage time was also determined for both the steady state and
finite forward bias time. For the finite forward bias time an exact solution
and a more easily handled approximation were obtained.

The diode with a drift field in a finite length n-type region was then
considered. Both the storage time and hole density were calculated for
this model. The relation of storage time to the length of the n-type re-
gion is given by Equation 75 and to the drift field is given by Equation 76.

This author feels that the most significant contributions of this the-
sis afe: 1. The acquisition of an equation for the current following the
storage phase, 2. The consideration of the reverse bias following a finite
forward bias pulse, and 3. The investigation of a finite length n-type
region with a drift field.

There are primarily three limitations to the application of this mater-

ial. First, an exponential approximation was used for the error function in
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the derivation of this material. Second, a one dimensional flow across
the junction was assumed. Third, a constant lifetime of minority carriers
was assumed.

The error incurred in the exponential epproximation can be made very
small by increasing the number of terms in the series. TFor the four term
series used for illustration in this thesis, this error was less than five
percent for most values of the argument.

The assumption of one dimensional flow will only be in jeopardy when
the diode being considered has a small cross-sectional area at the junc-
tion. There will then be a component of recombination current directed
toward the surface. However, it would be difficult to make a general a-
nalysis considering this surface recombination. This is because a separate
analysis would have to be conducted for each individual geometry considered.

The variation of minority carrier lifetime was discussed earlier in
this thesis and in general can be considered a second order effect.

With these reservations, the material of this thesis can be used to

predict the reverse response of diodes for the various cases considered

herein.
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VIII. APPENDIX

A, Error Function Approximation

The error function is to be approximated by the following closed series

n
erf x = Cje + Coe + Ce . (A~1)

This is eguivalent to

X bd bl
erf x A,Clul + 02u2 + Csu3 %

%k

where uk = e .

5 (A-2)

The error function will be equated to the approximation at N equally
spaced points i.e., x = Xy Xy, 20, 3% . . . (W - l)xl. Since Equation
A-2 is to be satisfied at these values of the argument, the following e-

quations will necessarily be true:

Cl + C2 + CS . . L] . L] . . L] L Cn = eI‘i‘ xo ’

Ciu, +Cu, +Cu, « ¢« » ¢« + » Cu =erf X) s

11 22 373 nn
2 2 2 2
Ciw "+ Cu "+ Cu” . oo oo L Cu = erf 2x , (a-3)
N-1 N-1 N-1 N-1
and Cw ™ T+ Cuy + Cguy .. Cu " " =erf (v - 1) X .

If the values of Upeeeou were assumed, or preassigned, this set would com-~

prise N linear equations of n unknowns Cl....Cn and could be solved exactly
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for N = n or approximately by the least squares method for N > n.
However, in general the u's are to be determined and at least 2n e-

quations are needed. A further difficulty is that the equations are non-

linear in the u's. To overcome this difficulty, a substitution will be

made which will result in two sets of n linear equations. (4)

In this procedure ul, u2, o o o un will be the roots of the algebraic
equation
n n-1 n-2
- a - e o e ¢ o a - a = . -
u 1% au L =0 (A-4)

The left hand side of A-4 being identified with (u - ul)(u - u2)(u - u3)
ceeeo(u - un). It remains now to obtain the & coefficients. To do this
the first equation of A-3 is multiplied by O!n, the second equation by

an-l’ «+.. the nth equation by @ and the (n + 1)th by -1 and the results

added. In view of the fact that all u's satisfy A-4, the result will be as

follows:

erfmcl-alerf(n-l)xl...anlerfxl-cxnerfxo=0.

(A-5)
A set of N-n-l additional equations of similar type may be obtained
in the same way by starting successively with the second, third, . . .
(N-n)th equations. Following this procedure, we see that Equations A-3 and

A-4 result in the following set of equations:
o, erf (n-l)xl + 0, erf (n-z)xl + .. 0 erf (xo) = erf nx, ,

O!l erf n_xl + 042 exf (n-l)xl + . . an exrt (xl) = erf (n + l)xl:
. . . . (A-G)

and Q. e;'f (N-E)xl + &2 erf (W -S)xl . ..Otnerf (N-n-lsxl = erf(N-].)xl.
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The values of the error functions may be found from tables and the above
equations solved exactly for N = 2n or solved approximately for N > 2n.
The coefficients of the factorable Equation A-4 have now been found.
Upon factoring this equation, the values of Wy Ugy ooeoe U will be
known. Ehese values then may be substituted back into Equation A-3 and
the n equations solved for the C's., Since the a's may be found from the

u's, Equation A-l is now completely determined.

B. Forward Bias

The solution to the following differential equation is to be obtained

2
opp 0Py

= —— =D . (B"l)
3T 32 I
The boundary conditions being
P(O: z)=0 2 (B-2)
apI
e =L (3-3)
z=20
and p (T, ®»)=0. (B-4)

To solve Equation B-1 subject to the above boundary conditions, the
Laplace Transform will be used. Designating the transformed dependent
variable by a capital and letting s be the independent variable of the

transform the following is obtained:

sp=S2.p, (B-5)
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db = F (B-6)
- dz s ? -
z =20
and
P(s, oo) =0 . (B-7)
The solution of this equation has the following form:
B(s, z)==CleZ l+s+02 T2 VLt s (B-8)

From boundary condition B-7, Cl is found to equal zero and from the condi-

tion B-6, 02 is given by

IF
C, = —m——m—r . B-9
2 s/l + s ( )

Substituting these back into Equation B-8 one obtains

IF -zJ1l + s (B-10)

syl + s

The inverse transformation of this equation may be found with the aid of
pair #825 given by Campbell and Foster (3). Using this transformation,

p(T, z) becomes
_ _IE -z z z z
p(T, 2) = 5 [ e ~ erfc (27‘1*- VT) - e” erfe (m-!- \/T)] . (B-11)

C. Storage Period Following Steady State
Forward Bias

The solution to the following differential equation is to be obtained

2
ory - IPrp

- P (c-1)
ST g2 | CII
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The boundary conditions during this period being

p(0, z) = I, ™", (c-2)
.y -1, (c-3)
z =0
and p(T, =) = 0. (c-4)

Taking the Laplace Transformation and denoting the dependent variable with

capitals, one obtains

2
a°p -2
Co-p(l+s)=-T, e, (c-5)
d22 F
_ép =i (c-8)
dz s ?
z=0
and P(s, ) =0 . (c-7)

The solution to this equation is of the following form

[ 3 ! - -
P(s, z) = C ZVEt S Lo ez“l+s--S:EF—.eZ. (c-8)

1 2

From the boundary conditions C6 and 07, Cl is found to be equal to

1
zero and 02 is given below:

®_F _1 (0-9)

1
c, =(H-I) —— .

J1 + s

2% 2 /IFs Elg_ -z (6-10)

P(S, z) = ——— e -
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It may be recognized that the first term on the right is of the same form
as that solved in Appendix B and the second has a well known inverse trans-

form. Hence, in the time domain this equation becomes

p(T, z) = IR;IF [e'z erfc (535 - {T) - &% erfec (é%-!- J'T_)] + IFe-z. (c-11)

D. Storage Period Following Finite
Forward Bias Time

The following equation is to be solved

%y Yoy
3T 322 - P oo (D-1)
The boundary conditions being
I, 2 (F7 + VT) (=)o (57 ~T)
p.-(0, z) = 5 (e” i C.e F -e 2 (-)c.e F )
IT f=o1l =0 i
(p-2)
op
- =L (p-3)
z=0
and
P (T, ®) = 0. (D-4)

The signs in ( ) are to be used for /TF > z/2 JFF and 1 > 1. After taking
the ILaplace Transformation,

-Ja, —]——Z -VT.)
- (1+s)= ;—F-(e-z > (-)Cie( 24z ¥
dz 1=

a.(az--'!' @)
SES T e FTy, (p-5)

i=0
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= = -:5 (D-6)

and
(D-7)

P(s, ®) =0,
where P is the transformed dependent varisble.

The complete solution of this equation has the form of

N1l + s -z/1l + s
+ Cze
(-)ai
(i)ai JT—F Z(QT—F" - 1)

. € e

N C
PR (S (2

i=20 (_)ai

G-

PII(s, z) = Cle

J.)2 - (1L + s)

a.
1
o, gt 1)
N C. e iF e F
) . (D-8)

;;o (ot 1)2 - (1 4+ 5)

2T,

" From the boundary conditions D-6 and D-7 the values of Cl and C2 may be

found. The inverse transform of this equation may be found with the aid

of pairs #825 and #819 of Reference 3. This results in
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(-)a;
(£)a, VT [W‘l) 1) T
PII(TZ)"“— i( Ce e
i=0 2
(( -Ja, (( -Ja; .
'ZT (-)a ZT
[e erfc(a_zﬁ-(Q—M_’fF'-l)f)'e T

(-) .
(erfc[T-—-l-( -1):/_]-2) ZO()Ce:L /Ty

a. a,
[(7%-+ 1 -] -z(ﬂ-%-+ 1) 5.
e T . [e F erfc(-zvz-,-r--(g%;+l)ﬁ)
a
2\/T' a.
-e (erfc[-27Z-T-+ (-é/—lT—}31— + 1)V T]- 2)]} - -EI—R— [e_z
erfe (grm -VT) - e erfe (g +/T)] , (p-9)

vhere the signs in ( ) are to be used when \/-ETF > z/f2 /TF and i > 1.
To illustrate that this equation is in accordance with the steady
state forward bias calculation, ‘JlF will be considered very large in Equation

D-9. This results in



73

NT
(T, z) = ' [(1 - zi%:. cieal F)(-gE lerfe (§§T-+ JT) - 2]

p ]
II 2 ]

2 a T, .2

i=1

-z
- & ferfe (- /T) - 21) ] +5I1—*[e'Z erfe (57 - VT)

- e” erfc (§§T +/T)] . (D-10)

It may be seen that the above equation reduces exactly to that of the

steady state forward bias case (Equation C-11).

E. Storage Period Following Finite Forward Bias Time
(Using an Approximation)

The following equation is to be solved

2
orr Oppg )

. = P
9T aze IT

. (B-1)

With boundary conditions being

PII(O: z) =m IF e-rz P) (E-2)
op
S| T (£-5)
z=0

and

PII (TJ m) =0. ) (E-4)
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Taking the Laplace Transform

dP P(1+s)--m1FeZ, (8-5)
dz
P(s, ») = 0, "~ (E-6)
and
- Q = i . (E-7)
dz s
z =0

-z V1+s -z/1 + s
(s z)'=IRez s-mIFe mIFe . (&-8)
’ s Vl+s (s+l-r2)¢l+ (s+l-r)

The inverse transformation may be found with the aid of #825 and #438 of

Reference 3. When these are performed, the above equation becomes:

p(T, z) = gi [e™® erfe (5%_,- - VT) -e® erfe (55?"'*' ff)]

m
IF—(l-r)T[ erfe (st r JT) - ™% Z (erfe (2= -  VT) - 2]
2T VT *
(z-9)
F. Reverse Recovery Phase
(Diffusion Current)
The solution to the following equation is to be obtained:
2
op p
ITT _ IIT (F-1)

ST 52 - Pryp -
Z

With the boundary conditions being
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(=)o, (372 -

- 2yT
20, 2) = £ B o7 ( S (e e
8 (5T )]
itayvyT
-ez(ﬁ C.e s)]+%,e-z,

and

P(T: °°)= 0.

Taking the Laplace Transform

2 - N
d—g - P(1L+5s)= IRQIF [e-z ( E (-)Cie
dz i=20

a,(—%— +/T)
-e%( zi%: c, e S ) -1, e,

i=20

P(s, 0) =0,
and

P(s, w) =0 .

The complete solution to this equation has the form

/T))

S

)

(-)oy (G- = /5,)

(F-2)

(F-3)

(F-4)

(F-5)

(F-6)

(F-7)
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P(s,z)=CeZJl+S+Ce-Zl+S+£R;——i
1 2 2
(-)a

()e /T, 2(zr= - 1)

( (-)Cs e € S -
i=0 ( )a

(Tl) - (1 + s)

N

i
z( + 1)
aiJTS . 27Ts

C.e
i

-Z
e
)+ I, S (r-8)
e 2
(ms+l) - (1 + s)
The undetermined constants Cl and 02 in Equation F-8 may be found by using

boundary conditions F-6 and F-7. When this is done the inverse transforma-

tion may be found with the aid of pair numbers 819 and 438 of Reference 3.

The following equation is the result. [(( )a ) : (- )a.
—-ﬁ—— -1)-1]7T - 7’.{’— 1)
- I (£)a /T i
ome) = BE[ 5 (-)cge _ (e
(-)a;
(-)a 2z - 1)

S

a,
erfe [—7— (T— - 1)VTl+ e (erfc[—e%f +(;7,;-1- - 1WYT] -2) )
S

S zZ
5 (e erfc[g—T-
a,

a. Z(E%--l- 1) a. IF
-(Q-;‘;-+l)\/ﬁ_‘]+e 5 (erfe [E\%"'(E’%—"‘l)ﬁ] - 2) )].._2_
8 s

. ' a,
o e s
- e e
i=

[e-z erfc(E% - JT) + e? erfe (-27z-f +/T )] + %‘ ™% . (Fr-9)

The signs in ( ) are to be used if f'fs > z/2/‘FS and i > 1.
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Because of the numerous exponentials which may be raised to powers
which contain positive coefficients times the variable, it seems beneficial
to briefly illustrate the boundness of this equation. The terms of concern

may be represented in the following form:

- B.T C.z
Ay 5375-52 (e* et [2 - erfe (§§§'+ Ci /T)] ) (F-10)
vhere
&y 2 %
Bi=(-27f;-1) -1 and Ci=(2JTs'l) .

>

If the Bi's are negative, it may be shown that Equation F-10 is well bounded
for all z. This may be done with the aid of the asymptotic approximations
given in Eguation 48 and Equation 49 of this thesis.

If the Bi's are positive and the Ci's are negative one may, for very
large values of T, use the asymptotic approximation and write Equation F-10

as B.T -C.°T

- et o 1
2‘ A, ICiI = . (F-11)

Now from the definitions of Bi and Ci’ this equation becomes

I - -
£ ¥ Jp— , (F-12)
el v

which approaches zero for large values of T.

1. Current during the recovery phase

Of prime concern during Phase IIT is the diffusion current. The mag-

nitude of this current may be calculated by the following equation:

(r-13)
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Hence, the slope of Equation F-9 is to be found at the junction. In taking

this derivative, the following equation will be used:

...x2
d(erf x) = 3i_ ax . (F-14)
Following this procedure, the following equation wes obtained
| [(——(-)aL 1) 1]7T
- ' ? (+)a /T 2JT' - -
I(T) = IREIF[ (")Cle 1 S e ( [( )a ]
i=0 2 J

(-)a; (-)a, (-)a,
(2-erfc(m=-l)ﬁ)+(w-l)erfc[-(?ﬁ[—,--l)/T]
S S S

(=)= a,
~( eﬂg_l)zT : T [(w;—-+l)2-l]T
S S
+ 2e JC;E_ ) + :E:: C e 5

([—7T—_+1](2-erfc(—7—_—+1)J_)+(—/-—+1)erfc[-( +l)l-]

-(é-]ELT- +1)%
s
+ 28 ] ;F (erfe

VaT

For the special case of Ts = 0, the signs in ( ) are not used and the above

(r-15)

equation reduces to

-T
1) = - I (;-:—F+ ert /T - 1) . (F-16)
b 18

For the general case of Ts > 0, the signs in ( ) are used. This results in
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a,
o, T [(g%;+1)2-1] T

N .
K1) = (I, - L) _Zlcie 1 Se
i =
a,
(e +1)2 T
JoT

-T

+IR-1F(3:T;+eﬁm.

(

&y %
+ (m;‘l‘ 1) exrt (Eﬁ:'l' l) ﬁ)

G. Potential Gradient in a Finite
Length N-Type Region

1. Forward bias

.(F-l7)

The solution to the following time independent equation is desired:

dapI de
Oz —= ~fL, —= - p_ .
dz2 p dz I
The boundary conditions being

dp = =
iz - :t’l'..p pP= - ;F atz=0,

and

% * (5 ~pr)p-'=Oatz=W.

The solution to this equation has the following form:

p(z) = C;

(G-1)

(G-2)

(G-3)

e, /| £o1° i, /| £ °
(-EP-+ l+—:9—z . (—éP-- l+-—4P—-)z (G-4)
e 4 e
o

To simplify the writing of the equations, the quantities A, B, and C will

be defined as follows:

%
A= 5

(G-5)
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£°r, 2
B=V1 + "ZP— s (G-6)
and
SL, :
C = I)—R . (G-7)
P

The boundary conditions (Equations G-2 and G-3) of the following two

equations may be solved for the values of Cl and C2.
- = G-8
(A - B) Cl+(A+B) c2 L, (c-8)

(& + B, (A - BW

(-A+B+C)e o

l-(A-!-B-C)e =0 (G-9)

Upon solution of these equations and substitution into Equation G-4, one

obtains:
p(z) = I (A+B-c)e?? B(z - 2W) (-A + B+ C) f;gw- B)z (6-10)
(A+BY(-A+B+C)+(A-B)(a+B-C)e
When the case of large W is considered, Egquation G-10 becomes:
) A - B)z (G-11)

p(z)=IFe A+ B) °

For the case of no drift field (f = 0), Equation G-10 reduces to:

(L+ce?+ (1-0) %N (G-12)
oW . =
1+Cc-(1L-C)e

p(z) = + I,

2. Reverse bias

a) Finite length n-type region with no drift field For this case,

the solution to the following equation is desired:

2
Py _9pyp (6-13)
3 - 5,2 TP G-




8L

With the boundary conditions being

(L+C)e? 4+ (1-c)edH (G-14)

14+4C-(L-¢)e™

P(o: z) = IF

(for vhich the quantities M and N will be defined such that the following

is true):
p(0, z) = I ( e?+me) (G-15)
aPII
--&—=1Ratz=0, (G'ls)
and
1T SL
—2 =0atz=W. (G-17)

Szt D, Prr

After taking the Laplace Transform,

2
L2 -p1+s)= -I (M e+ W e”), (G-18)
dz
ap _ IR _
--d—z-—g— atz-O, (G-lg)
and
SL
P . "D p - _
dz+DP P=0Oatz=W. (G-20)

The solution to this equation has the following form:

-z +
zl+s+c€z s+IF

-z z
L e 5 -s—-(Me + N e”) (G-21)

P(s, z) =C

From the boundary conditions (Equations G-19 and G-20) the values of Cl and

02 may be found. When these are substituted into Equation G-21, the result

is
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SL ar,
[T (n-1)] ({1 +s - D__p_)e(z-EW) HE S (SR + vIEE)eTE)
D

P(s,z) = i)
SL Sk oW VI F 5
s\/l+s[]—)—R+\/l+s+(D—R-\/l+s)e S]
b P :
+ EIE (e +me”) . (G-22)

" In this section, the storage time is of interest. Hence, an eguation of
p(Ts, 0), which is relatively easy to solve for Ts, is desired. To do this,
the inverse of the above equation will be made easier by employing the fol-

lowing approximations:

-2 VI F
1. VLS o) (G-23)

and

(G-24)

14 B VIFS

These approximations will not seriously limit the application of this ma-

terial since Equations G-23 and G-24 are true for most commercially avail-

able diodes.

Using these conditions, the inverse of Equation G-22 becomes

+I_(N-M)
o(T,z) = #. [e-z erfc (5%"@) - &% erfe (-é% +/T)]

+ I, (M e?rmel). (G-25)

The storage time may now be found by letting p(TS, 0) = 0. Upon

solving and substituting in the values of M and N, one obtains:
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-2W

' - 2W
l SII D - l - SII D e

erf/f; =
1+ 6

b) large W with a drift field For this case,

will be solved:
2
o _ op

g%” 52 3z ~ P -
z
With the boundary conditions being

T

B+ A

L
b

p(0, z) = eZ(A - B) )

P(T: ©) =0 )
and

- §§-+ (fLP) p=1IL atz=0

Teking the Laplace Transform:

&% _
2

dz

z(A - B)

dpP e
Pl+s) =T g5 >

fpp az "

B(s, @) = 0,

and

R

de —at 2
s

- az~+ f;pP

O .

The solution to this equation has the following form:

[ 2
P(s,z) = C + C, elA - /B + )

ez(A + {Be + s)
1

(G-26)

the following equation

(G-27)

(G-28)

(G-29)

(G-30)

(Gg-31)

(G-32)

(G-33)

ez(A-B)

+ I? _ETK¥§7 . (G—34)
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The values of Cl and 02 may be found by making use of the bhoundary condi-

tions (Equations G-32 and G-33). When these are substituted into Equation
G-34 the inverse may be found with the aid of part #8625 in Reference 3.
This results in

-Bz

P(T, Z) = [IR %‘] AZ 7%_—-57 exrfe (27Z,f - BE)

B
5 f\z- 5) erfe (e—zﬁ-!- B/T) + AeT erfe (ﬁf'*' AYT)]
z(A - B)
+ IF(B'P A.s (G_35)

The equation to determine the storage time is determined by using the con-
dition that p(TS, 0) = 0. When this is applied to Equation G-35 the fol-
lowing is the result:

2 2
1 - [.fZP+V1+iL-P—-”f—LE (e-Ts -:L)+Vl+iLP—

l+e 4

£ L ]
erf V(1 + —2)7 - —Re serf—22 ﬁg] . (G-36)
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